Как влияет фильтр на производительность насоса для воды?

Как легко рассчитать напор и производительность насоса

Упрощенный расчет напора и производительности насоса

Основными параметрами для выбора любого типа и вида насоса являются:

  • создаваемый напор;
  • производительность;
  • мощность электродвигателя.

 В данной статье мы остановимся на упрощенном расчете напора и производительности.

Напор, создаваемый насосом должен складываться из трех важных значений:

1. При определении требуемого напора насоса нужно помнить, что 1 метр напора по вертикали примерно равен 10 метрам напора по горизонтали (на самом деле на данное отношение влияет множество факторов).

Если в характеристиках насоса написано, что максимальный напор при нулевой производительности достигает Hmax = 48 метров, то значит, что по вертикали данный насос поднимет воду на высоту 48 метров или при нулевой высоте подъема он сможет доставить воду примерно на 480 метров по горизонтали (но при этом вода будет вытекать слабой струйкой).

Например, вы устанавливаете насос в подвале дома или гаража, находящемся на 3 метра ниже уровня земли. До входа системы водоснабжения в одноэтажный дом, куда подается вода — 20 метров. Значит, Вам необходим насос с напором свыше 5-ти метров при определенной производительности:

Hmax = 3 + 20/10 = 5 метров.

Но для нормальной работы системы водоснабжения Вам нужен насос с определенными напором и производительностью.

Вы спросите: «Почему при определенной производительности?»

Ответ: «Вам нужно, чтобы вода из шланга или крана не капала (а на насосе указан максимальный напор при нулевой производительности, либо наоборот), а вытекала с производительностью, достаточной для удаления воды из емкости.

Для бытовых целей производительности насоса хватит, если максимальный напор, создаваемый насосом (указан в характеристиках насоса) превышает расчетный на 3 метра. В данном случае 8 метров.

Опять-таки, не стоит забывать, что в ряде случаев необходим запас по напору, определяющему производительность насоса, то есть напор должен быть существенно больше.

Более точные расчеты напора и производительности насоса в зависимости от сложности системы трубопроводов, дальности перемещения воды и высоты подъема определяется по специальным диаграммам, таблицам или для сложных условий работы системы водоснабжения производятся сложнейшие расчеты, в которых с определенной степенью погрешности учитываются все параметры и характеристики системы.

2. Давление, рекомендуемое (необходимое) в точке потребления, как правило, для всех потребителей бытового назначения, должно быть от 1,5 до 3,0 бар (bar), что соответствует напору от 15-ти до 30-ти метров Hпотр = (15 … 30) м.

3. Расчетный напор насоса до основных точек потребления (например, до входа системы водоснабжения в одноэтажный дом):

Нрасч = Hгео + Hпотр + Hпот

Где: Нрасч —расчетный напор, создаваемый насосом, м;

Hгео— геодезическая высота подъёма воды (расстояние по вертикали от места установки насоса до наиболее высокорасположенного потребителя), м.

Hпотр — напор, который необходимо создать в самой удаленной точке и высоко расположенной точке потребления, м.

Hпот—суммарное гидравлическое сопротивление по всей длине Lтр всасывающего и нагнетательного трубопроводов (суммарные потери напора).**

*Высота всасывания

Чем выше температура воды, тем меньше высота всасывания, и практически при + 65-ти градусах Цельсия (°С) забор воды становится невозможен.

Обычно геометрическая высота всасывания для центробежных насосов составляет не более 5-ти, 7-ми метров и лишь для некоторых типов насосов она доходит до 9-ми метров.

**Точный расчет суммарных гидравлических потерь напора по всей длине Lтр трубопроводов и элементах инсталляционной аппаратуры, элементах управляющей автоматики и т.д. крайне сложен – приходится учитывать очень большое количество факторов.

Для крайне приблизительных и упрощенных расчетов зачастую достаточно принимать, что для горизонтального участка трубопровода длиной 100 метров разница между напором на входе и выходе с учетом потерь напора условно принимаем снижение напора на 10 м, что соответствует падению давления около 1 бар (bar)

Упрощенный пример расчета на уровне «двух пальцев» (за основу взят погружной насос).

а) Приведем пример или задачу:

Длина трубы 25 метров в высоту (от динамического уровня воды до дальней точки потребления). Какой нам нужен напор насоса, чтобы вода достигла точки потребления?

Решение очень простое — нам нужен напор, равный высоте от динамического уровня воды до точки потребления, то есть 25 метров!

Обратите внимание! В задаче указано, что вода должна достигнуть точки потребления, а не литься из трубы фонтаном.

б) Если Вы хотите понять: «Как найти величину напора, чтобы на выходе в точке потребления вода выходила фонтаном?» — решим следующую задачу.

Расстояние от уровня воды до точки потребления составляет 35 метров в высоту. Какой нам нужен напор насоса, чтобы вода выходила из трубы фонтаном или как минимум превысила высоту точки потребления? Решение тоже очень простое! Необходимо, чтобы у насоса высота напора была выше 35 метров!

Но нам необходимо рассчитать напор, достаточный для системы водоснабжения, чтобы на выходе из последней точки потребления создавался минимальный стандартный напор по водопотреблению.

Задача: Длина трубы по вертикали от уровня воды до точки потребления 35 метров. Какой нам нужен напор насоса, чтобы на выходе трубы (или другими словами в точке потребления) создать напор, равный 30 метрам?

Решение: Необходимо, чтобы у насоса был напор, равный 65 метрам! Эта цифра получена путем сложения двух данных: 35 м (длина трубы по вертикали от уровня воды до точки потребления) + 30 м (стандартный, рекомендованный в точке потребления напор – детальнее указано выше) = 65 метров.

4. Потери создаваемого напора — потери напора, снижение давления между входом и выходом элемента конструкции гидросистемы, к которым относятся трубопроводы, арматура, электронасосы, элементы управляющей автоматики и т.д.

Потери напора, создаваемого насосом при перекачивании жидкости, зависят от:

  • материала, из которого изготовлены элементы трубопроводов;
  • геометрических характеристик трубопроводов (длины, диаметров, углов изгибов используемых переходников, отводов и т.д.);
  • наличия клапанов, фильтров (как грубой, так и тонкой очистки), изгибов, приспособлений и других вспомогательных устройств;
  • фактического технического состояния гидросистемы, в том числе степени шероховатости внутренних поверхностей;
  • вязкости перекачиваемой жидкости.

Потери создаваемого напора можно приблизительно рассчитать по таблицам, в которых указываются значения уменьшения напора, выраженного в метрах водяного столба.

С учетом того, что:

10 м.в.ст. (10 метров водяного столба) = 1 бар (bar) = 100000 Па (Pa)= 100 кПа (kPa)

Нужно при любых расчетах привести все величины к одним единицам измерений.

Пример расчета потерь создаваемого напора (hп).

Заметно снизилось (уменьшилось) давление в системе водоснабжения — попробуем найти причину — обоснуем необходимость замены труб, элементов трубопровода или существующего насоса, а затем изменим внутренний диаметр (следовательно, увеличим сечение трубы) и тип материала, из которого изготовлены трубы системы водоснабжения, или существующий насос.

Исходные данные:

1) Система водоснабжения была смонтирована из стальных оцинкованных труб с внутренним диаметром d1 = 25 мм.

2) Для перекачивания жидкости в системе водоснабжения применяется условный центробежный насос с производительностью Q = 4,0 м3/ч.

3) Общая длина трубопроводов составляет L = 100 м.

4) Для наглядности и упрощения примера не берём во внимание количество и углы изгибов используемых переходников, отводов — считаем только потери напора по длине прямого трубопровода (что имеет мало общего с реальной жизнью, так как в действительности любая система водоснабжения состоит из всевозможных изгибов, переходников, штуцеров, различных элементов запорной арматуры, в том числе кранов, вентилей; о действительном состоянии внутренних стенок стальных труб после определенного срока мы умышленно умалчиваем!).

Вопрос:

На сколько изменится создаваемый напор, если при реконструкции системы водоснабжения взамен демонтированных стальных труб будут использоваться трубы из ПХВ с внутренним диаметром

d2 = 38 мм?

Решение:

1) По ниже приведенной таблице потерь напора определяем потерю напора при длине L = 100 м трубопровода и производительности Q = 4,0 м3/ч для труб из ПХВ с внутренним диаметром d1 = 25 мм.

Потери напора составляют h1 = 21,5 м (м.в.ст.), что соответствует уменьшению давления на величину:

P1 = 2,15 бар (bar).

2) Внизу таблицы в примечании указано, что полученное значение потерь давления для стальных оцинкованных труб нужно умножить на поправочный коэффициент k = 1,5. В результате получим значение потерь давления:

h2 = 21,5 м × 1,5 = 32,25 м (м.в.ст.), что примерно соответствует уменьшению давления на величину: ∆P2 = 3,23 бар (bar). (Это результат на условном трубопроводе длиной 100 метров!)

3) По таблице потерь для труб из ПХВ диаметром d2 = 38 мм и длиной L = 100 м при производительности Q = 4,0 м3/ч определим потери напора, равные h3 = 2,9 м.в.ст., что соответствует уменьшению давления 0,29 бар (bar).

4) После замены стальных оцинкованных труб с внутренним диаметром d1 = 25 мм на трубы из ПХВ с внутренним диаметром d2 = 38 мм, при одинаковой длине трубопровода L = 100 м и при той же производительности Q = 4,0 м3/ч условного насоса (по условию задачи насос не меняли!) получили меньшие потери напора и давления:

h = h2 — h3 = 32,25 — 2,9 = 29,35 м (м.в.ст.); или ∆P = ∆P2 — ∆P1 = 3,23 — 0,29 = 2,94 бар (bar)

Вывод: поменяем трубы для системы водоснабжения, а не насос (насос не «виноват»)!

Таблица расчета потерь напора (в метрах водяного столба) для труб из ПХВ и полипропилена в зависимости от производительности, длины и диаметра трубопровода. (Все числовые значения потерь напора, приведенные в таблице, являются экспериментально установленными, так как не существует простых формул для расчета потерь!)


Таблица расчета потерь напора (в метрах водяного столба) для стальных труб при перекачивании сточных вод в зависимости от производительности, длины и диаметра трубопровода. (Все числовые значения потерь напора, приведенные в таблице, являются экспериментально установленными, так как не существует простых формул для расчета потерь!)


Расчет производительности следует производить по двум основным значениям:

1. Расход в точке потребления.

2. Потери производительности по длине трубопровода от насоса до точки потребления.

Что касается расхода потребления воды, то тут примерно есть приблизительно готовый цифровой стандарт.

Примерный расход воды из потребителей:

  • умывальник — 6 л/мин;
  • туалет — 4 л/мин;
  • посудомоечная машина — 8 л/мин;
  • душ — 10 л/мин;
  • поливочный кран — 18 л/мин;
  • стиральная машина — 10 л/мин;
  • бассейн — 15 л/мин;
  • полив газонов и цветников требует до 6 л/мин воды на один м2, расход при этом зависит также от способа орошения и интенсивности полива;
  • сауна или баня потребует около 16 л/мин.

 На практике обычно считается расход из одного открытого крана равен 10 литрам/минуту.

Возьмем для примера смеситель в ванной. По опыту для комфортного использования смесителя необходимо, чтобы расход воды на выходе примерно равнялся 15 литрам в минуту. Эту величину и возьмем для стандарта по подбору расхода в данной задаче.

Но ведь у нас не одна точка водоразбора, тогда необходимо рассчитать общий поток для всех точек потребления. Соответственно расход всех точек потребления необходимо суммировать и найти максимальный показатель расхода.

Предположим, у нас имеется две ванны и кухня. И представим, к примеру, что в первой ванной работает душ, во второй — непосредственно смеситель и стиральная машина, на кухне открыт кран и работает посудомоечная машина.

Суммируем расходы из всех точек потребления 10 + 15 + 10 + 6 + 8 = 49 литров в минуту — получили наш расход из пяти основных потребителей.

Читайте также:  Толщина наливного пола: предельные показатели

Можем подбирать необходимую производительность насоса с учетом примерного расхода.

Важно! При расчете максимальной производительности (объемной подачи) насоса или при установке насоса повышения давления необходимо брать запас не менее (40 … 50) % от суммарного максимально возможного водопотребления.

Важно! При расчете фактической производительности (объемной подачи) насоса необходимо учитывать, что все потребители в системе водоснабжения никогда не работают одновременно, соответственно клиент может взять поправочный коэффициент (коэффициент запаса по производительности), равным kзап = 0,8 … 0,9 = (80 … 90) % от суммарного максимально возможного водопотребления.

Источник: https://sigma.ua/blog/stati/kak-legko-rasschitat-napor-i-proizvoditelnost-nasosa-/

Производительность насоса и мощность: подбор по формуле расхода

Часто хозяева частного участка прибегают к обустройству собственного источника на воду — колодца или скважины. И, конечно же, для качественной подачи воды оттуда требуется установка хорошего насосного оборудования.

Здесь важно правильно осуществить подбор устройства в соответствии не только с его конструкцией, способом монтажа и типом рабочего узла, но и определить номинальную производительность насоса именно для вашего источника.

Как это сделать, как выглядит формула расчёта мощности агрегата, и правила подбора погружного оборудования мы предлагаем в нашем материале.

Кроме того, при подборе погружного скважинного насоса всегда стоит помнить, что для неглубокого источника (не более 8-9 метров зеркала воды) можно использовать поверхностные насосы центробежного тира. Для более глубокого залегания зеркала воды необходимо использовать погружной центробежный или вибрационный насос.

Важные расчёты

Производительная мощность (производительность) позволяет насосу качать воду с требуемым для расхода в доме объемом

Для того чтобы сделать правильный подбор насосного агрегата для системы частного водоснабжения, необходимо провести верные расчёты производительной мощности и напора агрегата.

Производительная мощность (производительность) позволяет насосу качать воду с требуемым для расхода в доме объемом. Стоит знать, что согласно СНИП, средний расход воды в сутки на одного проживающего в доме составляет 200 литров. При этом всегда нужно этот показатель умножать на количество человек,

Но необходимо принять во внимание при расчетах производительной мощности помпы и момент, при котором все водозаборные точки будут включены одновременно. К полученным данным стоит прибавлять и возможное потребление воды для полива огорода. Согласно СНИП этот показатель равен 3-6 литров на 1м3 участка.

Для справки: средний объем расхода воды на каждую водозаборную точку выглядит так:

  • Душ или ванна — около 10 л/мин;
  • Туалет — 5-6 л/мин;
  • Кран в кухонной мойке — 6 л/мин.

При условии одновременного использования всех перечисленных сантехнических точек потребление воды составит в среднем 20-22 л/мин.

Расчёт производительной мощности

Для семьи из 3-4 человек производительная мощность скважинного насоса должна составлять 2-3 м3/час (при условии необходимости орошения огорода)

Для того чтобы произвести расчёт производительной мощности скважинного центробежного или вибрационного насоса и осуществить правильный подбор оборудования для перекачки воды, необходимо использовать два показателя:

Количество человек, проживающих в доме;

  • Средний расход воды на человека в час, что составляет примерно 0,5 м3.
  • Плюс к расчётам стоит подключить возможный расход воды для полива.

В результате будем иметь такие показатели:

  • Для семьи из 3-4 человек производительная мощность скважинного насоса должна составлять 2-3 м3/час (при условии необходимости орошения огорода). Если же будет происходить забор воды из системы водоснабжения для полива, то производительная мощность скважинного насоса должна составлять 3-5 м3/час для семьи из того же количества человек.

Что касается напора

Для того чтобы провести расчёт напора для центробежного или вибрационного скважинного насоса, необходимо выяснить глубину расположения насоса (глубину водозабора)

Этот немаловажный фактор, от которого зависит возможность скважинного насоса поднимать воду на заданную высоту от точки забора и транспортировать её без перебоев по всей длине трубопровода.

Для того чтобы провести расчёт напора для центробежного или вибрационного скважинного насоса, необходимо выяснить глубину расположения насоса (глубину водозабора).

Она определяется от поверхности земли (горизонтального трубопровода) до точки погружения/расположения агрегата.

Кроме того, необходимо принимать во внимание и длину всего трубопровода от начальной горизонтальной точки до распределителя системы водоснабжения.

Расчёт напора

Произвести расчёт напора для скважинного насоса центробежного или вибрационного типа вовсе не сложно

Произвести расчёт напора для скважинного насоса центробежного или вибрационного типа вовсе не сложно. Для этого используют такую формулу:

H = Hgeo + (0,2 x L) + 10 [м],

в которой значения таковы:

  • Н — итоговый напор для конкретного скважинного центробежного или вибрационного насоса;
  • Hgeo м— высота трубы от места установки скважинного насоса до самой высокой вертикальной точки водозабора;
  • 0,2 — коэффициент сопротивления трубопровода по всей его протяженности;
  • L — горизонтальная длина трубы системы водоснабжения;
  • 10-15 приблизительный показатель, необходимый для получения стабильного напора в системе, который требуется добавить к результату при расчёте.

Рассмотрим подсчёт напора для погружного скважинного насоса на примере

Для качественной транспортировки воды по системе водоснабжения внутренняя поверхность водоприёмных труб должна быть гладкой

Имеем систему водоснабжения с колодцем, глубина зеркала воды в котором 10 метров.

При этом сам колодец находится в 10 метрах от дома. Самая высокая водозаборная точка располагается над уровнем земли на 4 метра. В доме живут 4 человека. Кроме того предполагается полив участка и мойка авто.

У нас получается, что вертикальный участок трубопровода от точки забора воды насосом до самой высокой точки потребления воды составляет 14 метров. То есть Hgeo = 10+4 = 14 метров.

Здесь же берем в учёт потери в размере 20% от общей длины трубопровода, которая равна 26 метров (10 метров + 16 метров). Этот показатель будет равен приблизительно 5 метрам.

Прибавляем 10 метров на поправку.

Имеем такой результат:

Н = 14+5+10 = 29 метров.

Таким образом получаем напор для скважинного насоса 29 метров.

Производительность насоса для всех перечисленных нужд должна составлять 3-4 м3/час.

Источник: https://vodakanazer.ru/nasosy-i-nasosnoe-oborudovanie/nasosy-dlya-kolodcev/proizvoditelnost-nasosa.html

Фильтр для насосной станции: где ставить?

На сегодняшний день трудно представить загородный дом, частное жилье без автономного и независимого водоснабжения. Для обеспечения водой жилые постройки используют насосные станции, которые подают воду из скважины в трубопроводную систему дома и поддерживают давление.

Для долговременного использования и работоспособности оборудования, необходимо использовать фильтр для насосной станции. Устанавливается фильтр перед насосной станцией на всасывающем устройстве. Фильтр служит защитой от ила, песка и т.д, содержащихся в воде.

Зачем нужен фильтр?

В загородном или частном доме в качестве источника воды является колодец или скважина. В воде из таких источников обязательно будут присутствовать различных механические примеси, к которым относятся частички глины, песка или мела.

Такие примеси негативно сказываются на насосной станции после некоторого времени использования. Механические частички со временем засоряют и разрушают гидроаккумулятор, после чего насосная станция придет в негодность.

Фильтр предварительной очистки воды для насосной станции — лучший по эффективности вариант для очищения воды, безопасности и долговечности оборудования.

Фильтр для воды

к меню ↑

Типы фильтров

По степени очистки воды можно выделить два основных типа фильтров:

  1. Тонкой очистки. Частицы, удерживаемые такими фильтрами могут быть размером менее 1 мкм. Так же могут задерживаться тяжелые металлы. Выглядит фильтр тонкой очистки как колба, в которой находится сменный картридж. Этот картридж выполнен из нитей или волокон полиэтилена, которые намотаны на сердечник из пластика. Обычно, такие элементы фильтрации устанавливаются после грубой фильтрации воды. Дополнительно можно применять мембранного типа фильтры, после которых вода будет пригодна для питья.
  2. Грубой очистки. Фильтрующие элементы этого вида способны не пропускать частицы размером до 1 мм. Такие частицы в виде песка, ила, камушков, окалин и т.д. могут содержаться в подаваемой воде. В качестве фильтрующего элемента может использоваться мелкозернистая сетка, которая пропускает отфильтрованную воду дальше в насос, а частицы с большим от сетки размером остаются. Такая сетка устанавливается в конце трубы всасывания, или на магистрали водоснабжения устанавливается колба.

По назначению фильтры можно разделить на следующие категории:

  • бытовые, простой сложности;
  • очистка средней степени;
  • имеющие высшую степень водоочищения.

Популярные фильтры для личных насосных станций

По способу очищения воды фильтры делятся на следующие категории:

  1. Ионообменные. Такие фильтрующие элементы применяются, когда необходимо выполнить смягчение воды, удалить марганец и железо.
  2. Биологические. Очищения здесь происходит при помощи микроорганизмов. Они активно влияют на процессы обмена.
  3. Механические. Эти фильтры предназначаются для защиты от загрязнения бытовой техники, в виде стиральной машины, и сантехники.
  4. Обратный осмос. На сегодняшний день такая очистка считается наиболее экологической и эффективной. С ее помощью можно избавиться полностью от содержания в жидкости каких-либо вредных веществ.
  5. Электрические. Такое очищение воды выполняется при помощи озона и в ходе очистки освобождаются марганец, хлор, сероводород, железо, тяжелые металлы, нефтепродукты. В ходе таких операций происходит обеззараживание в полном объеме.
  6. Физико-химические. Свое применение эта технология нашла против растворимых примесей при помощи сорбции и вызвала широкое использование благодаря высокой эффективности.

к меню ↑

Виды фильтров

  1. Входной фильтр, устанавливаемый на погружные насосы. Этот фильтрующий элемент устанавливается на всасывающие части, непосредственно на насосе. Происходит очистка воды от крупных механических частиц и примесей благодаря специальной защитной сетке.
  2. Предварительный фильтр для очистки.

    Этот элемент требуется устанавливать перед насосом в водопроводную цепь и выполняет удаление крупных механических примесей в воде. Этот элемент выглядит как колба, в которой находится картридж, выполненный из пластика. Для легкости отслеживания засоренности, колба изготавливается из прозрачного материала.

    После засорения, можно быстро и легко вынуть колбу и промыть эту колбу.

  3. Входной фильтр, имеющий обратный клапан для насосной станции. Данный элемент монтируется на конце трубы забора жидкости у насосной станции или самовсасывающего насоса.

    В этом случае выполняется две функции: фильтр-сетка очищает воду от примесей, а отток воды из насосной системы предотвращает обратный клапан. Этот элемент помогает выполнять правильный запуск самовсасывающего насоса.

    Обычно, обратный клапан обладает резьбовым соединением G1, с помощью которого можно подключить всасывающий шланг для насосной станции. Шланг для насосной станции должен выдерживать давление в системе водоснабжения.

  4. Центральный фильтр. Применяется для очистки в системах подземного или наземного полива.

    Система с фильтром такого исполнения, позволяет прослужить долгий срок оборудованию. Благодаря установке (в разрыв трубопровода) и съемной конструкции не требуется большого труда для его чистки.

  5. Всасывающая сетка. Представляет из себя сетку для фильтрации, вмонтированную в специальный корпус. Свое применение нашел при использовании автоцистерн, ручных насосов и мотопомп.

Подключение насосной станции к колодцу

Выбор фильтра, который будет подходить по назначению, зависит от производительности установленной насосной станции, нагрузки этой станции и веса твердых частиц. Для того, чтобы обезопасить себя и свою бытовую технику, лучше использовать сразу два типа фильтрующего элемента.

На входе нужно установить фильтр грубой очистки воды, который будет отсеивать твердые тела и примеси.

После него устанавливают фильтр тонкой очистки для очищения от более мелких частиц, что благоприятно скажется на работе насосных станций и остального оборудования.

Чтобы правильно собрать водопроводную систему нужно соблюдать последовательность:

  • фильтр для грубого очищения воды;
  • насосная станция;
  • фильтр для тонкого очищения воды;
  • кран (смеситель) для подачи воды.

Опускаемые в колодец или скважину шланги, не оснащаются ничем.
к меню ↑

Какой фильтр надо ставить для колодца с грязной водой? (видео)

к меню ↑

Фильтр грубой очистки

Принято считать, что фильтр грубой очистки, является первой линией при обороне. Его еще называют механическим фильтром. Устанавливается такой элемент обычно перед станцией и отсеивает в воде твердые частицы и примеси, что положительно влияет на насосную станцию и другое оборудование.

Предназначение фильтров может быть разнообразное и это связано с материалами, из которых выполняются, и степень очистки. Грубые фильтры могут выполняться различного размера и, в основном, из металлической сетки.

Справляются они с такой работой не совсем хорошо, но такая сеточка способна улавливать мелкие частицы до 0,3 мм. Благодаря этой особенности и дешевизны они получили большую популярность водопроводных системах.

Для контроля образуемого давления в системе существует фильтр более технологичный, у которого установлен спускной клапан и манометр. Чтобы промыть фильтрующий элемент не нужно разбирать сам фильтр для этой операции. Но в ценовом плане он будет на порядок выше простого фильтра из сетки.
к меню ↑

Фильтры, оснащенные волокнистым элементом фильтрации

Для еще более тонкой фильтрации среди грубой очистки применяются фильтры со сменным элементом, который изготавливается из разнообразных волокнистых материалов.

При отсеивании рекордных для грубой очистки показателях (до 100 мкм), эти фильтры не создают значительного сопротивления образовавшемуся потоку воды.

Многие владельцы насосных станций, в целях экономии, устанавливают такой фильтр перед станцией, чтобы не выполнять последующую фильтрацию.

При своих плюсах, такие фильтры страдают от своих же минусов. Они не могут сравняться с сеточными фильтрами из-за дороговизны, больших габаритов и необходимость в замене фильтрующего элемента.

Такие фильтрующие элементы, не смотря ни на что, являются предпочтительнее сеточных, так как надежнее в защите насосного оборудования.

Грубая очистка без тонкой должна применяться в тех случаях, когда не жалко вашего домашнего оборудования, смесителей, насосов, водонагревателей, так как грубая очистка не способна полностью очистить для вас воду.

Сетчатый фильтр грубой очистки с клапаном регулировки давления

к меню ↑

Фильтр тонкой очистки

Такая очистка относится ко второму этапу подготовки воды. На этом этапе очистки происходит удаление мелких частиц из воды, которые не были собраны при грубой очистке. Устанавливаются элементы тонкой очистки непосредственно после фильтра, предназначенного для грубой очистки.

Такие фильтры способны очистить всю воду, которая подается в дом. Этого не способны выполнить бытовые фильтры, так как предназначены для конкретной позиции водоотбора. Элементы тонкой очистки должны иметь большую пропускную способность и устанавливаться сразу после насосной станции.

Основным элементом такого фильтра является мелкозернистая мембрана, которая способна пропускать только водные молекулы. После начала фильтрации вода будет разделена на два потока.

В одном потоке пойдет чистая фильтрованная вода, а в другом концентрат, состоящий из соляных растворов и механических частиц.

В итоге первый поток уходит в кран до потребителя, а второй по дренажу стекает в канализацию.
к меню ↑

Проволочные фильтры, предназначенные для тонкой очистки

Это одно из последних изобретений, в корпусе которого находится намотанная тонкая проволока, покрытая стеклянной оболочкой. При работе всасывающего насоса, сквозь этого фильтра проходят молекулы воды, а все грязные частицы остаются в специальной колбе.

Проволочный фильтр для воды

к меню ↑

Защита насосных станций и фильтра

Нередко насосные станции выходят из строя при работе без воды. Для устранения этой проблемы на некоторые погружные насосы была установлена встроенная защита от перегрева двигателя и сухого хода, которая его блокирует. Самым распространенным вариантом является установка реле сухого хода.

Сетевое напряжение подключается на реле защиты от сухого хода. С реле сухого хода отходящие провода идут не реле давления. При наличии в трубопроводе воды с нужным давлением будет работать насосная станция. При исчезновении воды, реле сухого хода выполнит отключение станции.

При сборке трубопроводной сети в дом не стоит забывать о фильтрах для воды. Качественно отфильтрованная вода будет полезна не только потребителю, но и для насосного оборудования.

 Главная страница » Насосы

Источник: http://ByreniePro.ru/nasosy/filtr-dlya-nasosnoj-stantsii.html

Очистка воды с помощью фильтра для насосной станции: классификация фильтров и степень очистки воды

Бесперебойная подача воды в частные дома, коттеджи зависит не только от нахождения вблизи участка скважины или колодца, но и от специального оборудования, которое может снабжать под необходимым давлением на нужный уровень, а также провести фильтрацию и заполнить систему. С данным вопросом справится насосная станция для дома.

Многих потребителей, желающих обеспечить свое жилище водой, интересуют многие вопросы. Например, каковы отличия насосной станции от обычного насоса? Каков принцип работы насосного оборудования, в чем он заключается? Чем удобна станция?

Специалисты дают такие разъяснения: насосная станция – это устройство, которое предназначено для того, чтобы создавать и поддерживать постоянное давление в водопроводной системе. Такая система полностью автоматизирована и не требует присутствия и участия человека.

Основной частою оборудования является сам насос, но чтобы обеспечить его работу требуются дополнительные устройства. Датчики напора воды контролируют его уровень в трубопроводе. Гидроаккумуляторы управляют всей системой автоматически, регулируя подачу воды при широком диапазоне уровня давления. Конструкция насоса при этом не имеет особого значения.

Как осуществить правильный выбор?

Основной причиной покупки насосного оборудования в дом или коттедж является отсутствие централизованного водоснабжения. Естественно, покупка подходящей насосной станции это очень ответственное занятие. И специалисты, в свою очередь, обращают внимание потребителя на технические характеристики и определенные параметры таких устройств.

Основным фактором, определяющим выбор конструкции, является производительность. Так как определенное количество воды следует поднять на нужный уровень, обеспечивая всех домочадцев.

Также не последнее значение имеют свойства воды: колодцы имеют характеристики глубины, состояния уровня воды, размеры трубы и тип фильтрационной системы.

В основном насосное оборудование рассчитано на девятиметровую глубину подачи воды.

Насосные станции условно делятся на следующие типы устройств:

  • Самовсасывающие.
  • Центробежные.
  • Вихревые самовсасывающие.

Оборудование по типу конструкции может быть моноблочным или консольным. Первый тип подразумевает расположение гидравлики на том же валу, где находится электрический двигатель.

Также существует деление устройств по видам подъема:

  1. В первом варианте подача воды осуществляется из источника.
  2. Ко второму виду подъема относится создание давления воды над уровнем земной поверхности, то есть примерно на 2-3 этаж.
  3. Затем следует подъем, при котором заполняется водопроводная система выше 3 этажа. Этот процесс осуществляют несколько соединенных цепочкой насосов.

При этом источником воды может быть не только скважина или колодец, можно использовать для таких нужд и главный водопровод или резервуар. Наиболее популярным типом, который заслужил внимание пользователей, является самовсасывающий насос.

Основные технические параметры

Чтобы знать возможности оборудования необходимо разбираться в его характеристиках и параметрах. Станция со средней мощностью, имеющую показатель объема гидроаккумулятора 20 литров, подойдет для дома, где проживает семья из 3 или 4 человек. Единицей производительности насоса являются кубические метры.

Показатель производительности в 2-4 куб. м. имеют насосные станции, используемые для бытовых нужд, при этом параметры напора воды становятся от 40 до 55 м.

Для продления срока работы насосной станции учитывается качество сборки и материалы, использованные для производства деталей устройства, а также вспомогательных приборов.

Бывает, что производители используют пластик, однако нужно учесть, что он недолговечен.

Существенно продлевают эксплуатационный период насосной станции металлические элементы из чугуна и стали, они также сглаживают шум во время работы.

Насосное оборудование, имеющее автоматическое управление обычно производится на базе самовсасывающих центробежных систем. Встроенные эжекторы позволяют устройству подавать воду с напором от 40 м, даже при глубине 9 метров. При этом надо отметить, что на оборудование не влияет находящийся в трубопроводе воздух.

Фильтр для насосной станции

Чтобы насосная станция работала бесперебойно на протяжении большого количества времени, следует использовать вспомогательные приспособления для ее защиты. Таким прибором может стать фильтр, это самый простой и эффективный способ решения проблемы. Он устанавливается на всасывающей конструкции агрегата.

Механический фильтр

Большинство домов и коттеджей сегодня качают воду их скважин и колодцев, а жидкость состоит из многих химических примесей, которые пагубно воздействуют на устройство.

Например, в состав воды могут входить глина и песок, которые засоряют гидроаккумулятор и способны привести в негодность насос.

В данном случае предотвратить проблему поможет установка механического фильтра перед насосной станцией в качестве предварительного барьера для разрушающих аппарат веществ. Это поможет предотвратить проблему в будущем.

Разработчиками внедряются специальные фильтры, которые работают с погружными насосами, они устанавливаются прямо на оборудование. Однако такой подход имеет и свои минусы. Предварительный фильтр действует таким образом, что его работа создает помехи напору и давлению, как для насосной станции, так и для тока воды.

Более того, фильтр подключается к реле давления, что при его засорении создается ситуация остановки подачи воды, так как он перестает пропускать сквозь себя воду. В это время насос будет работать, так как к нему не поступит сигнал об отключении, который передает реле, поэтому не исключено, что все закончится повреждением насоса.

Чтобы предотвратить подобные недостатки в работе фильтра необходимо производить его установку рядом с насосной станцией. Это даст возможность проводить чистку фильтра по мере необходимости, однако от пагубного воздействия частиц примесей будет защищен не насос, а только аккумулятор, поэтому он все равно не застрахован от поломок. Чтобы защитить насос требуется установка реле на сухом ходу.

Фильтр: степень очистки воды

Грубая очистка

Для работы насосной станции также используется фильтр грубой очистки воды. Благодаря его действию вода очищается от следующих нерастворимых частиц:

  • Песка,
  • Ржавчины,
  • Ила,
  • Глины.

Также он справляется и с другими подобными частицами, загрязняющими воду.

Такой фильтр имеет много вариаций исполнения, но все они работают по одному принципу: в фильтре остаются грубые элементы, воде же к трубопроводу проходит уже очищенной.

При работе фильтра грубой очистки воды в нем задерживаются частицы диаметром до 1 мм. Фильтр по мере его загрязнения и накопления частиц можно снимать для очистки, а затем устанавливать обратно.

Фильтрующим элементом является мелкоячеистая сетка или колба с картриджем, который выполнен из нетканого полипропилена или полиэфира. Если частицы примеси больше размера ячейки фильтра, то они задерживаются, а очищенная вода поступает в насос.

Конструкция фильтра грубой очистки может иметь вид сетки, которая устанавливается на конце всасывающей трубы, или быть колбой в магистрали водоснабжения.

Тонкая очистка.

Данные фильтры создают барьер микрочастицам диаметром менее 1 мкм. В эту группу входят и частицы тяжелых металлов. Эти очистительные устройства по конструкции напоминают колбу.

В нее вставляются фильтрующие картриджи, выполненные из полиэтиленовых волокон или полипропиленовых нитей. Они наматываются на пластиковый сердечник. Фильтры с тонкой очисткой обычно устанавливаются после устройств с грубой очисткой воды.

В дополнение можно применять мембранные фильтры, которые по цепочке очищают воду до пригодной для питья.

Классификация фильтров

Фильтры подразделяются на следующие виды:

  • Для погружных насосов используется фильтр входной. Он фиксируется на всасывающей части погружного насоса, способен очистить воду от крупных частиц примесей, чем служит надежной защитой оборудования от засорения.
  • На насосной станции устанавливается фильтр входной с обратным клапаном. Фильтр выполняет очистку воды от примесей, а обратный клапан служит для предотвращения обратного оттока воды из системы, поэтому запуску самовсасывающего насоса ничего не грозит. Обычно для этого используется резьбовое соединение G1. Фильтр обратного клапана может использоваться вместе со шлангами, которые не имеют соединительного механизма. Для этого фильтр снабжается хомутами и различного диаметра переходниками.
  • Фильтр предварительной очистки способен удалить механические примеси из воды, он устанавливается в магистраль подачи воды перед насосом. Имеет вид колбы с фильтрующим картриджем из пластика. Если он засорился, его достаточно достать и промыть, а затем поставить обратно на магистраль к насосу. Колба при работе показывает уровень загрязненности, так как выполнена из прозрачного материала.
  • Центральный служит для очистки воды в системах полива, расположенного под землей и на земле. Благодаря использованию данного фильтра достигается значительное продление срока эксплуатации всей системы. Монтаж производится в разрыв магистрали водоснабжения. Съемная конструкция позволяет без труда снять фильтр по мере загрязнения и установить обратно, предварительно почистив.
  • Сетка всасывающая обычно применяется в ручных насосах, мотопомп и автоцистерн. Она имеет вид фильтрующей сетки в специальном корпусе с элементом для поднятия воды. Имеет встроенный обратный клапан, позволяющий системе оставаться наполненной, даже если выключен насос. А это поддерживает начальное давление и способствует быстрому запуску.

Чтобы выбрать подходящий вид фильтра следует исходить из веса твердых частиц, а также от производительности насосной станции, ее нагрузки.

Сегодня эффективное водоснабжение дома или коттеджа можно осуществлять в экономном режиме.

Ведь современные автоматические насосные станции могут реагировать на открытие смесителей при поступлении сигнала. Кран открывают – оборудование начинает подавать воду, закрывают – система отключается.

Фильтр же позволяет насосной станции работать на полную мощность, обеспечивая защиту от нарушающих ее работу различных примесей.

Источник: http://stoki.guru/vodoprovod/filtry-dlya-vody/ochistka-vody-i-filtr-dlya-nasosnoy-stancii.html

Производительность насоса

Xylem Flygt Flygt серия CH – Центробежные насосы Flygt серии CHПроизводительность (Q) обычно выражается в кубических метрах в час (м3/час).

Так как жидкости абсолютно несжимаемы, существует прямая зависимость между производительностью, или расходом, размером трубы и скоростью жидкости.

Это отношение имеет вид:
Где    ID – внутренний диаметр трубопровода, дюйм V  –  скорость жидкости, м/сек

Q  –  производительность, (м3/час)

Рис. 1. Высота всасывания – показаны геометрические напоры в насосной системе, где насос находится выше резервуара всасывания (статический напор)

Мощность и КПД

Работа, выполняемая  насосом, является функцией общего напора и веса жидкости,  перекачиваемой за заданный период  времени. Как правило, в формулах используются параметр производительности насоса (м3/час) и плотность жидкости вместо веса. Мощность, потребляемая насосом (bhp) – это действительная мощность на валу насоса сообщаемая ему электродвигателем. Мощность на выходе насоса  или гидравлическая (whp) –  мощность, сообщаемая насосом жидкой среде. Эти два определения выражены следующими формулами.Мощность на входе насоса (потребляемая мощность) больше  мощности на выходе насоса или гидравлической мощности за счет механических и гидравлических потерь, возникающих в насосе. Поэтому эффективность насоса (КПД) определяется как отношение этих двух значений.

Быстроходность и тип насоса

Быстроходность  – это  расчетный коэффициент, применяемый для классификации рабочих колес насоса по их типу и размерам. Он определяется как частота вращения геометрически подобного рабочего колеса, подающего 0,075 м3/с жидкости при напоре 1 м. (В американских единицах измерения 1 галлон в минуту при 1 футе напора) Однако, это определение используется только при инженерном проектировании, и быстроходность  должна пониматься как коэффициент  для расчета определенных характеристик насоса. Для определения коэффициента быстроходности, используется следующая формула:Где    N – Скорость насоса ( в оборотах в минуту)

Q – Производительность (м3/мин) в точке максимального КПД.

H – Напор в точке максимального КПД. Быстроходность определяет геометрию или  класс рабочего колеса, как показано на рис.3Рис. 3 Форма колеса и быстроходность По мере возрастания быстроходности соотношение между наружным диаметром рабочего колеса D2 и входным диаметром D1 сокращается. Это соотношение равно 1.0 для рабочего колеса осевого потока. Рабочие колеса с радиальными лопатками (низким Ns) создают напор за счет центробежной силы. Насосы с более высоким Ns создают напор частично с помощью той же центробежной силы, а частично с помощью осевых сил. Чем выше коэффициент быстроходности, тем большая доля осевых сил в создании напора. Насосы осевого потока или пропеллерные с коэффициентом быстроходности 10.000 (в американских единицах) и выше создают напор исключительно за счет осевых сил. Колеса радиального потока обычно применяются, когда необходим высокий напор и малая производительность, тогда как  колеса  осевого  потока  применяются для работ по перекачиванию больших объемов жидкости при низких напорах.

Кавитационный запас (NPSH), давление на входе и кавитация

Гидравлический Институт определяет параметр NPSH, как разницу абсолютного напора жидкости на входе в рабочее колесо и давления насыщенных паров. Другими словами, это превышение внутренней энергии жидкости на входе в рабочее колесо на ее давлением насыщенных паров. Данное соотношение позволяет определить, закипит ли жидкость в насосе в точке минимального давления.

Давление, которое жидкость оказывает на окружающие ее поверхности, зависит от температуры. Это давление называется давлением насыщенных паров, и оно является уникальной характеристикой любой жидкости, которая возрастает с увеличением температуры. Когда давление насыщенного пара жидкости достигает давления окружающей среды, жидкость начинает испаряться или кипеть.

Температура, при которой происходит это испарение, будет понижаться по мере того, как понижается давление окружающей среды. При испарении жидкость значительно увеличивается в объеме. Один кубический метр воды при комнатной температуре превращается в 1700 кубических метра пара (испарений) при той же самой температуре.

Из вышеизложенного видно, что если мы хотим эффективно перекачивать жидкость, нужно сохранять ее в жидком состоянии. Таким образом, NPSH определяется как величина действительной высоты всасывания насоса, при которой не возникнет испарения перекачиваемой жидкости в точке минимально возможного давления жидкости в насосе. Требуемое значение NPSH (NPSHR) – Зависит от конструкции насоса.

Когда жидкость проходит через всасывающий патрубок насоса и попадает на направляющий аппарат рабочего колеса, скорость жидкости увеличивается, а давление падает. Также возникают потери давления из-за турбулентности и неровности потока жидкости, т.к. жидкость бьет по колесу. Центробежная сила лопаток рабочего колеса также увеличивает скорость и уменьшает давление жидкости.

NPSHR – необходимый подпор на всасывающем патрубке насоса, чтобы компенсировать все потери давления в насосе и удержать жидкость выше уровня давления насыщенных паров, и ограничить потери напора, возникающие в результате кавитации на уровне 3%. Трехпроцентный запас на падение напора – общепринятый критерий NPSHR , принятый для облегчения расчета.

Большинство насосов с низкой всасывающей способностью могут работать с низким или минимальным запасом по NPSHR, что серьезно не сказывается на сроке их эксплуатации. NPSHR зависит от скорости и производительности насосов. Обычно производители насосов предоставляют информацию о характеристике NPSHR. Допустимый NPSH (NPSHA) – является характеристикой системы, в которой работает насос.

Это разница между атмосферным давлением, высоты всасывания насоса и давления насыщенных паров. На рисунке изображены 4 типа систем, для каждой приведены формулы расчета NPSHA системы. Очень важно также учесть плотность жидкости и привести все величины к одной единице измерения.Рис.

4 Вычисление столба жидкости над всасывающим патрубком насоса для типичных условий всасывания Pв  –  атмосферное давление, в метрах; Vр  –  Давление насыщенных паров жидкости при максимальной рабочей температуре жидкости; P – Давление на поверхности жидкости в закрытой емкости, в метрах; Ls  – Максимальная высота всасывания, в метрах; Lн  – Максимальная высота подпора, в метрах; Hf –  Потери на трение во всасывающем трубопроводе при требуемой производительности насоса, в метрах. В реальной системе NPSHA определяется с помощью показаний манометра, установленного на стороне всасывания насоса. Применяется следующая формула:Где Gr –  Показания манометра на всасывании насоса, выраженные в метрах, взятые с плюсом (+) , если давление выше атмосферного и с минусом (-), если ниже, с поправкой на осевую линию насоса; hv = Динамический напор во всасывающем трубопроводе, выраженный в метрах. Кавитация – это термин, применяющийся для описания явления, возникающего в насосе при недостаточном NPSHA. Давление жидкости при этом ниже значения давления насыщенных паров, и мельчайшие пузырьки пара жидкости, двигаются вдоль лопаток рабочего колеса, в области высокого давления пузырьки быстро разрушаются. Разрушение или «взрыв» настолько быстрое, что на слух это может казаться рокотом, как будто в насос насыпали гравий. В насосах с высокой всасывающей способностью взрывы пузырьков настолько сильные, что лопатки рабочего колеса разрушаются всего в течение нескольких минут. Это воздействие может увеличиваться и при некоторых условиях (очень высокая всасывающая способность) может привести к серьезной эрозии рабочего колеса. Возникшую в насосе кавитацию очень легко распознать по характерному шуму. Кроме повреждений рабочего колеса кавитация может привести к снижению производительности насоса из-за происходящего в насосе испарения жидкости. При кавитации может снизиться напор насоса и /или стать неустойчивым, также непостоянным может стать и энергопотребление насоса. Вибрации и механические повреждения такие как, например, повреждение подшипников, также могут стать результатом работы насоса с высокой или очень высокой всасывающей способностью при кавитации.

Чтобы предотвратить нежелательный эффект кавитации для стандартных насосов с низкой всасывающей способностью, необходимо обеспечить, чтобы NPSHA системы был выше, чем NPSHR насоса. Насосы с высокой всасывающей способностью требуют запаса для NPSHR. Стандарт Гидравлического Института (ANSI/HI 9.6.1) предлагает увеличивать NPSHR в 1,2 – 2,5 раза для насосов с высокой и очень высокой всасывающей способностью, при работе в допустимом диапазоне рабочих характеристик.

Источник: http://www.fluidbusiness.ru/usefull/articles/proizvoditelnost_nasosa/

Ссылка на основную публикацию
Adblock
detector