Трансформаторы постоянного и переменного тока

Трансформаторы постоянного и переменного тока – принцип работы, схемы

Для нормализации электрической энергии, поступающей к дому или квартире, используются различные устройства. Предлагаем рассмотреть, как работают измерительные трансформаторы тока постоянного и переменного, их назначение, схема подключения, принцип работы и советы по выбору.

Общие понятия

Трансформатор тока (ТТ) маркировка ГОСТ 7746-2001 – это устройство является одним из видов «измерительного трансформатора», который предназначен для получения переменного тока в его вторичной обмотке, где величина преобразованного напряжения пропорциональна текущей измеряемой величине. Номинальная мощность трансформаторов может быть 25, 40, 63, 100, 160 кВА.

Трансформаторы тока, у которых класс точности 0,2; 0,5; 1; 3; 10 могут снизить высокие проходные токи напряжения на более низкие, этим они обеспечивают удобный способ безопасного контроля электроэнергии в переменной линии передачи с использованием стандартного амперметра. Принцип действия трансформатора тока ничем не отличается от обычного.

Существуют разные трансформаторы, типы приборов с различными пропускными способностями (суммирующий СЭЩ, ТТИ-200 5, 5 5, 300 5, 0 66, 1 1, 400 5, 150 5, ТК 20, опорный ТОЛ 10,  ТВЛМ, ABB, ИЭК, ТЗЛМ, ТЛК, ТСН, ТФЗМ, ТЛМ, ТЛО, ТОП, ТПЛ, ТПОЛ).

Фото – Трансформатор тока

Видео: устройство трансформатора тока ТФРМ 750

Как работает устройство и конструкция трансформаторов

Первичная обмотка включения может быть либо плоской, либо представлять собой ролик из толстого провода, обернутого вокруг сердечника, проводника или шины через центральное отверстие.

Благодаря такой конструкции, трехфазный трансформатор переменного тока имеет первичную обмотку с минимальным количеством витков, что положительно влияет на эффективность работы, в частности, коэффициент трансформации.

Вторичная обмотка может иметь большее число витков катушки. Они намотаны на ламинированную основу магнитного материала с низкими потерями, который имеет большую площадь поперечного сечения.

Плотность магнитного потока является низкой, при этом используя гораздо меньшую площадь поперечного сечения проволоки, номинальный ток практически не теряет своего напряжения.

Эти вторичные обмотки обычно рассчитаны на стандартный показатель 1 Ампер или 5 Ампер. Это хорошо демонстрирует векторная диаграмма:

Фото – Векторная диаграмма

Виды трансформаторов

Всего есть три основных типа трансформаторов тока:

  1. Сухие – это трансформаторы первичной обмотки, физически последовательно соединены с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента трансформации трансформатора.
  2. Тороидальные трансформаторы – они не содержат первичную обмотку. Вместо этого линия, которая несет ток, протекающий в сети, проводит его через специальное «окно» или отверстие тороидального трансформатора. Некоторые торроидального типа имеют «раздвоенное ядро», которое позволяет им открываться, работать и закрываться, не отключая напряжения цепи, к которой они подключены. Они широко используются для защиты от замыкания в проводке частного дома или квартиры многоэтажки.
  3. Высоковольтные масляные трансформаторы (элегазовые). Эти устройства для нормализации тока используют кабель или шинные передатчики главной цепи первичной обмоткой, их периодичность эквивалентна одному ходу стандартного сухого трансформатора. Они полностью изолированы от высокого рабочего напряжения системы, как правило, присоединены болтами к нагрузочной системе устройства.
  4. Также они могут быть разборные, они же разъемные, встроенные, оптические, и т.д.

Трансформаторы тока и напряжения могут уменьшать или увеличивать текущие уровни от тысячи ампер к стандартному выходу, в зависимости от марки (Circutor, ASK, Schneider Electric, АВВ, Армавир) и типа, они могут быть рассчитаны на 6 кв, 630 кв, 10 кв.

Таким образом, малые и точные приборы и устройства управления могут использоваться с КТ, потому что они изолированы от любых линий электропередач высокого напряжения.

Есть множество приборов учета, которые используются для трансформаторов тока, начиная с амперметра и ваттметром, и заканчивая специальными выключателями нагрузки, УЗО-автоматами и т.д.

Фото – Трансформаторы тока тор

Для чего нужны трансформаторы тока

Трансформатор тока нулевой последовательности широко используется в организации работы производства, в быту (с его помощью проводят сварочные работы, он нормализуют входящее в дом напряжение, бросок тока, он нормализует работу электросчётчика с целью увеличения безопасности).

Трансформатор является важным инструментом в области электротехники. Текущие уровни электрического тока должны контролироваться в целях безопасности и эффективности работы прочих бытовых и промышленных приборов.

Измерительные устройства, подключенные к трансформаторам, позволяют совершать мониторинг в различных местах по всей системе.

Они также могут быть использованы для измерения электрического использования здания и выставления счетов или целей проверки.

Трансформатор тока – схема

Как сделать свой трансформатор

Трансформаторы состоят из двух цепей, связанных с намагничивающимся материалом, которые называют «сердечником». Оба контура имеют определенную длину, она должна быть такой, чтобы катушки вокруг сердечника могли передавать энергию от одного контура к другому.

В трансформаторе тока первичные цепи (энергия-передача) петли проходят через сердечник ​​только один раз. Вторичная цепь петли проходит несколько раз вокруг ядра. Сердечник может быть стационарным, т.е.

находиться на месте постоянно, или быть шарнирным, чтобы соответствовать направлению тока, что лучше защищает приборы от короткого замыкания.

Для того чтобы собрать мини-трансформатор нам понадобится:

  • Изоляционная лента;
  • Медная проволока для намагничивания (у меди особая плотность, которая помогает создать нужное магнитное поле);
  • Железное кольцо;
  • Амперметр.

Как сделать малогабаритный трансформатор своими руками:

  1. Медную проволоку нужно обернуть вокруг железного кольца, чтобы она охватывала практически всю поверхность кольца. Обмотки могут перекрываться или нет. Чем больше число витков, тем меньше вторичный ток будет принят через вторичную обмотку.
  2. Обмотайте конструкцию изолентой, чтобы детали держались вместе;
  3. Снимите покрытие с концов провода;
  4. Прикрепите зачищенные провода к концам амперметра;
  5. Присоедините линию напряжения сети к железному кольцу. Используйте измерения на амперметре для определения коэффициента преобразования, чтобы можно было определить параметры трансформации и сравнить их с данными из вторичной обмотки;
  6. Вставьте линию питания, которая проходит тестирование к амперметру. Сравните данные, для настройки измените количество витков.

Фото – Одновитковый трансформатор

Таким образом, шинный и импульсный трансформатор может быть добавлен к линии уже на месте, съемный сердечник может быть сделан путем присоединения четырех стержней из мягкого железа к линии питания, чем ближе – тем лучше. Три стержня должны быть намотаны заранее. Четвертый при необходимости можно не обматывать, просто прикрепить при помощи изоляционной ленты.

Расчет трансформатора

Расчет силовых трансформаторов холостого хода, у которых начальное напряжение 1 и вторичное 160, с внутренним сопротивлением 0.2Ω производится по такой формуле. В нашем примере первичный ток 800 Ампер, такая методика может подстроиться под любой ток:

Is= Ip (Np/Ns) = 800 (1/160) = 5 A

Мы видим выше, что с вторичной обмотки трансформатор был подключен через амперметр, который имеет очень малое сопротивление, падение напряжения на вторичной обмотке составляет всего 1,0 вольта при полной величине первичного тока на обмотках.

Если амперметр удаляют, вторичная обмотка становится открытой и трансформатор действует как повышающий, в результате очень высокого напряжения равном соотношении:   Vp (Ns / NP), ток регулируется на вторичной обмотке. Формула может изменяться, если у Вас несколько обмоток или более слабый прибор, кроме того, здесь не учтен ток холостого хода трансформатора.

Нужно помнить, что подключение счетчика через трансформаторы тока формула может иметь немного другой вид, т.к. будет учитываться еще и пропускная способность учетного прибора.

Чтобы подобрать нужную мощность трансформатора, нужно просчитать потребное напряжение всех электрических устройств в доме, а после суммировать полученную сумму и вольтамперные характеристики трансформатора (ВАХ). Если эти значения не учтены, то возможна перегрузка и защита не будет достигать нужного уровня при высокой нагрузке сети.

Перед тем, как подключить готовый трансформатор, нужно проконсультироваться со специалистом, он поможет определить недочеты, которые Вы могли упустить из виду.

Как выбрать трансформатор

Поверка трансформаторов тока на месте, ремонт и испытание осуществляется в обязательном порядке, многие предприятия (Самарский и Екатеринбургский завод, Калужский холдинг, Свердловский завод трансформаторов тока и прочие) предоставляют такие услуги. Замена некоторых деталей также должна производиться либо официальным дилером, либо представителем конкретной компании-производителя.

Также нужно знать, что означают условные обозначения:

Фото – Условные обозначения

Их расшифровка поможет Вам провести монтаж устройств, а также разобраться в работе. Любое обозначение стандартизировано. Следите за тем, чтобы в работе трансформатора присутствовала кратность, она может разниться в зависимости от конкретной модели, поэтому внимательно просматривайте паспорт трансформатора и каталог определенных компаний.

Установка соединения производится при полном отключении питания сети, кроме того, желательно, чтобы работу выполнял специалист. Его можно монтировать на дин-рейку, в специальные трансформаторные шкафы, на пусковой панели, открытую местность, непосредственно на электрический щит.

Средняя стоимость на такой прибор в зависимости от его назначения варьируется от 30 000 рублей до 100 000 и выше, возможны номиналы до 10 штук.

Цена во многом обусловлена мощностью и пропускной способностью, чем ниже допустимая мощность – тем дешевле будет регулятор, подбор осуществляется индивидуально. Очень важно прямо на месте проверить трансформатор на его соответствие заданным характеристикам.

Сроки работы устройства – до 10 лет в зависимости от того, какой мощности купить трансформатор тока, межповерочный интервал прибора 220 220 – 2 года.

Источник: https://www.asutpp.ru/transformatory-toka.html

Трансформаторы постоянного и переменного тока

Главная » Освещение » Трансформаторы » Трансформаторы постоянного и переменного тока

Чтобы нормализировать электроэнергию, которая поступает к дому необходимо использовать трансформаторы. Трансформаторы постоянного и переменного тока пользуются значительной популярностью.

В этой статье мы представили вам схемы, инструкции и конструкции трансформаторов постоянного и переменного тока. Если вам будет интересно, тогда можете прочесть про реактивное сопротивление трансформатора.

Трансформатор тока имеет маркировку ТТ. Это устройство на сегодняшний день является одним из видов измерительного трансформатора, который предназначается для получения переменного тока во вторичной обмотке. Номинальная мощность подобных трансформаторов может быть 25, 40, 63, 100, 160 кВА.

Трансформаторы с классом точности 0.2, 0.5, 1, 3 могут снизить высокий проходной ток напряжения. Также они позволяют обеспечить безопасность для ваших электрических приборов, которые находятся в доме.

Принцип действия трансформатора переменного тока практически нечем не отличается от обычного. Пропускная способность трансформатора также может быть разнообразной и будет зависеть от типа конструкции.

Устройство трансформатора тока

В устройстве можно встретить первичную обмотку, которая будет похожа на пластину или на ролик. Благодаря этой пластине можно получить качественную обмотку, которая будет иметь минимальное количество витков.

Это в свою очередь может значительно повлиять на эффективность работы. Вторичная обмотка может иметь большее количество витков. Их необходимо намотать на ламинирующую основу или на материал, который будет иметь минимальные потери.

При необходимости вы можете прочесть про резервную релейную защиту трансформатора.

Плотность магнитного потока можно считать достаточно низкой. Вторичная обмотка обычно рассчитываться на показатель в 1 или 5 Ампер. Увидеть это можно на векторной диаграмме, которая расположена ниже:

Читайте также:  Шторы из обоев своими руками: как сделать жалюзи?

Для чего нужны трансформаторы переменного и постоянного тока

Трансформаторы на сегодняшний день широко используются на производстве или в быту. Они позволяют надежно защитить технику или приборы от поражения током. При необходимости вы также можете приобрести сварочные трансформаторы для выполнения работ с металлом.

Это устройство считается достаточно важным в электротехнике. Текущие уровни электрического тока обязательно должны контролироваться. Это необходимо не только в целях безопасности, но и для повышения эффективности работы бытовых приборов.

Как выбрать трансформатор

Проверка трансформатора тока должны выполнять регулярно. Ее выполнением можете заниматься вы, но, если у вас нет определенного опыта, тогда лучше всего доверить эту работу профессионалам.

Многие предприятия готовы качественно выполнить эту работу. Если вам необходима замена деталей в трансформаторе, тогда приобретать их необходимо только у официального дилера.

Также во время выбора вам необходимо знать следующие обозначения:

Благодаря расшифровке трансформатора переменного и постоянного тока вы сможете выполнить качественный монтаж устройства.

Также следите за его проверкой, частота которой будет зависеть от модели вашего устройства. Установку трансформатора необходимо выполнять при полном отключении от электрической сети.

При необходимости выполнить монтаж вы можете на дин-рейку, в трансформаторные шкафы или пусковую панель.

Обычно средняя стоимость трансформатора может колебаться от 30 000 до 100 000 рублей. Цена также обычно может зависеть от мощности и пропускной способности.

Если допустимая мощность будет низкой, тогда соответственно и цена значительно упадет. Проверять новый трансформатор необходимо на месте. Благодаря этому вы сможете избежать мошенников.

Обычно срок работы трансформатора может быть разнообразным. Он зависит от ряда факторов, которые могут повлиять на этот процесс.

Источник: http://vse-elektrichestvo.ru/osveshhenie/transformatory/transformatory-postoyannogo-i-peremennogo-toka.html

Для чего необходим и как работает трансформатор постоянного тока

Для того чтобы увеличить или уменьшить постоянный потенциал применяют соответствующий трансформатор. Этот преобразователь имеет магнитопровод, который выполнен как магнитная система, а в его пазах находятся обмотки (первичная и вторичная) и их коммутаторы. Последние – это включенные управляемые полупроводниковые вентили.

Для преобразования постоянного потенциала одной величины в другую применяют вращающееся магнитное поле, оно создается в обвивке (первичной).

Большой трансформатор постоянного тока

Это производят переключением вентилей и подачей импульсов тока на электроды, которые передвинуты по отношению друг к другу на определенный угол (зависит от того сколько секций имеет трансформатор постоянного тока), а в результате уменьшаются потери, массогабаритные значения и увеличивается надежность и КПД.

Где применяют такие приборы

Они позволяют повысить тот потенциал, который вырабатывает источник переменного электричества, установленный на электростанции, и передают его на большое расстояние, при этом напряжение бывает высоким (от 110 до 1150 кВ). Этим уменьшают потерю энергии, и возможно применять провода меньшего сечения.

Передаваемое напряжение от высоковольтной линии снижают, применив преобразователи до 600, 380, 220 и 127 В. На таких показателях работают бытовые приборы в жилых домах и промышленные — на производствах.

Трансформаторы применяют и на подстанциях, здесь они необходимы для того чтобы уменьшить напряжение, которое подают к контактному двигателю или вспомогательной цепи.

Такие аппараты бывают тяговыми, лабораторными и др., но все они считаются силовыми. Их применяют для подключения электроприборов, электросварки и др. Трансформаторы имеют одну- , три фазы, две- и множество обмоток.

Как работает этот аппарат

Рассмотрим принцип работы трансформатора, который основан на таком явлении, как электромагнитная индукция. Самый простой аппарат имеет стальной магнитопровод и две обвивки, которые изолированы и не связаны друг с другом электрически. К первичной обвивке подают переменную эл.энергию, а к вторичной, через выпрямитель, подключают потребителей.

Для работы тягового аппарата осуществляют связь управляющей размагничивающей обмотки с потенциалом генератора. Источником питания является вторичная обмотка распределяющего трансформатора, в цепь которого входят аппараты постоянного напряжения. Они и регулируют величину электричества в главной обмотке, которая зависима от потенциала тягового генератора.

По принципу работы трансформатор постоянного потенциала это простой магнитный усилитель, который имеет две обвивки — рабочую и управляющую обмотки, причем последняя (управляющая) не имеет обратной связи.

Трехфазный понижающий трансформатор

Этот аппарат состоит из двух сердечников, имеющих тороидальную форму. Их изготовляют из пермаллоя (сплав, имеющий ферромагнитные свойства), это лента имеет толщину 0,2 мм.

На сердечниках имеется катушка с обмоткой (употребляют только медный провод с сечением 1мм).

Все залито эпоксидной смолой или подобной смесью, которая не дает влаге попасть внутрь, и обеспечивает долгую и надежную эксплуатацию трансформатору.

Если хотят установить преобразователь на тепловоз, то применяют для этого угольники и стягивают их шпильками. Обвивку управления аппарата стабильного потенциала включают на выходы генератора, пропуская его через резистор.

Исходя из этого, сила тока преобразователя, всегда прямо пропорциональна ампиражу тягового агрегата. Поэтому электричество в рабочих обмотках всегда пропорционально не только напряжению генератора, но и току подмагничивания.

Аппарат для стабильного электричества и трансформатор постоянного напряжения идентичны, только первый без управляющей обмотки. Для того чтобы его подмагнитить через дырочки сердечника проходит гибкий провод. По нему проводят ток от двух двигателей, при его росте, увеличивается подмагничивание и растет электричество обвивки на выходе.

Отсюда, можно сделать вывод, что ток, образующийся в рабочей цепи преобразователя прямо пропорционален сумме этой же величины, но двух электрических двигателей (тяговых). В рабочей цепи преобразователя электричество может иметь максимальную величину, которая составит до 3 А.

Вместо заключения

Аппарат, работающий на стабильном токе, может преобразовывать ток большого значения в пропорциональную слабую величину, которую можно использовать для того чтобы автоматически регулировать напряжение генератора (тягового).

Статья была полезной? Оцени и поделись ей в соц. сетях:

Источник: http://ExpertElektrik.ru/transformator-postoyannogo-toka.html

Постоянный и переменный ток. Значение трансформаторов

Без электричества и электрических приборов уже попросту невозможно представить современный мир. Всё к чему мы так привыкли: освещение, бытовые приборы, компьютеры, телевизоры – так или иначе связано с электропитанием. Однако, стоит отметить, что одни приборы работают от переменного тока, а другие – питаются от источников постоянного тока.

Постоянным током называют ток, который в течение некоторого промежутка времени не меняет своего направления и величины. Таким образом, постоянный ток имеет постоянное напряжение и силу тока.

Постоянный ток используется:

  • для передачи электроэнергии на высоковольтных линиях электропередач (например, 500кV). Это связано с тем, что если применять переменный ток того же напряжения, с учетом амплитудных значений напряжений и их перепада, то такие напряжения могут превышать величину напряжения постоянного тока в несколько раз. Использование переменного тока в высоковольтных проводах приведет к дополнительным тратам на изоляционные материалы, что значительно увеличит стоимость ЛЭП;
  • в контактных сетях электрического транспорта – троллейбусов и трамваев – до 3000V;
  • в сетях до 1000V для электродвигателей с тяжелыми условиями пуска – прокатные станы, центрифуги, и др.
  • для электросетей до 500V, используемых для грузоподъемных механизмов – подъемных электрических кранов;
  • в качестве источника питания различных переносных бытовых приборов – фонарики, аудиоприёмники, диагностические приборы, мультиметры, мобильные телефоны.

Стоит отметить, что в условиях тяжелого пуска – т.е. если пусковой момент высок, а требуется плавное регулирование скорости, тягового усилия и пускового момента – применяются двигатели постоянного тока. Таковыми, например, являются двигатели элетротранспорта, электрических мельниц, центрифуг.

Постоянный ток, чаще всего можно встретить в различных элементах питания – аккумуляторах и батарейках. Скажем, в автомобилях используется аккумуляторы постоянного тока напряжением 12V; для строительной техники – экскаваторов, бульдозеров, и др. используются аккумуляторы, имеющие напряжение в 24V. Аккумулятор мобильного телефона автора статьи – постоянного тока напряжением 3,7V.

Каждый источник постоянного тока имеет две клеммы или разъема, обозначаемые как плюс (+) и минус (-). Считается, что постоянный ток движется от плюсовой клеммы (+) к минусовой(-), при этом, между ними можно подключить оборудование (например лампочку). На рисунке 1 представлена схема работы постоянного тока с подключенной лампой.

Рис 1. Схема работы постоянного тока с подключенной лампой

На самом деле, процессы, протекающие в электросети постоянного тока происходят очень быстро, и изобразить их в реальном времени не представляется возможным.

Схематично, действие постоянного тока в простейшей сети, многократно замедленное, представлено на рисунке 2. Оно дает наиболее полное представление о процессах, происходящих в сети постоянного тока.

Рис 2. Схема действия постоянного тока в простейшей сети

Переменный ток – это ток, который за определенный промежуток времени, меняет свое направление. Частота смены направления измеряется в герцах.

1 герц (Гц)– означает, что за одну секунду совершен полный цикл смены направления (туда-обратно).

В Европейских странах, в том числе и в России, в бытовых электросетях используется однофазный переменный ток, имеющий частоту 50Гц, т.е. меняющий своё направление 100 раз в секунду.

Таким образом, за одну секунду через нить лампы, горящей на обычном письменном столе, ток проходит 50 раз в одном направлении и пятьдесят раз в обратном (Рисунок 3).

Рис 3. Схема работы переменного тока с подключенной лампой

В американских и канадских электросетях используется переменный ток с частотой в 60 Гц, вместо общепринятого переменного тока с частотой в 50 Гц.

Также, как источник постоянного тока имеет две клеммы – плюсовую и минусовую, источник однофазного переменного тока имеет две клеммы или разъема, называемые «фаза» и «ноль».

Кстати, переменный ток в домашней розетке называется однофазным, как раз из-за наличия одного разъема «фаза» (рисунок 4). Величина напряжения переменного однофазного тока равна 220V.

Рис 4. Схема действия переменного тока в простейшей сети

Как видно из схемы замедленного действия однофазного переменного тока в простейшей сети, переменный ток действует следующим образом: переменный ток начинает движение из «фазы» в сторону «нуля», доходит до него, останавливается, и затем, движется в обратном направлении.

Особенностями переменного однофазного тока являются:

  • Среднее значение силы переменного тока за период равняется нулю.
  • Переменный ток за период меняет не только направление движения, но и свою величину.
  • Действующее значение силы переменного тока – это сила такого постоянного тока, при которой средняя мощность, которая выделяется в проводнике в цепи переменного тока, равна мощности, которая выделяется в том же проводнике в цепи постоянного тока. Когда говорят о токах и напряжении в сети переменного тока, имеют в виду их действующие значения.
Читайте также:  Расход смеси для наливного пола на 1м2 в зависимости от вида материала

Действующее напряжение сети переменного тока в обыкновенной бытовой розетке составляет напряжение в сети 220 вольт.

Широкое применение переменного тока в технике и для бытовых нужд вызвано тем, что, переменный ток легко трансформируется. Напряжение в сети переменного тока может быть легко повышено или понижено при помощи специального устройства – трансформатора.

Трансформатор – электромагнитное устройство, которое преобразует посредством электромагнитной индукции переменный ток таким образом, что напряжение в сети уменьшается либо увеличивается в несколько раз без изменения частоты, и практически без потери мощности.

Для преобразования напряжения переменного тока в сторону уменьшения (например, силовые трансформаторы с 10 000V городских сетей до 220V домашней сети) применяются понижающие трансформаторы. Для преобразования напряжения сетей в сторону повышения – повышающие трансформаторы.

Источник: http://www.tdtransformator.ru/podderzhka/stati/statya/

Принцип работы трансформаторов постоянного и переменного тока

С целью преобразования электрической энергии высокого напряжения до значений, приемлемых при эксплуатации бытовых приборов в частных домах и квартирах, используются специальные устройства – трансформаторы. В этой статье мы дадим определение трансформаторам постоянного и переменного тока, рассмотрим принцип их работы и разновидности.

Определение трансформаторов тока

Трансформатором тока называют устройство, используемое для образования переменного тока на вторичной обмотке с напряжением, значение которого пропорционально измеряемой величине. Выпускаются разных мощность – 25, 100, 1000 кВА и т. д.

Но трансформатор необязательно понижает входное напряжение – он может работать и на повышение. Существуют приборы различного класса точности, что зависит от погрешности.

В общей сложности есть пять классов точности – 0,2, 0,5, 1, 3 и 10. С ростом класса точности повышается и значение погрешностей.

Это значит, что приборы классом точности 0,2 характеризуются минимальными погрешностями и используются преимущественно в лабораторных условиях.

Принцип действия трансформаторов тока

Конструктивно трансформатор ТМГСУ и любого другого типа состоит из магнитопровода (сердечника), изготавливаемого из электротехнической стали, и обмоток (в автотрансформаторах одна, срощенная) из меди.

  Первичная обмотка бывает плоской или в форме ролика, и оборачивается вокруг сердечника или проводника. Это позволяет создать трехфазный трансформатор с первичной обмоткой, состоящей из минимального числа витков.

Такой подход существенно повышает эффективность работы устройства и его коэффициент трансформации.

На вторичной обмотке обычно больше витков. Они наматываются на основу магнитопровода, характеризующегося малыми потерями и при поперечном рассмотрении большой площадью сечения. Величина плотности магнитного потока минимальна, низки и потери напряжения. Для вторичных обмоток обычно используют стандартные величины 1 или 5 А.

Разновидности трансформаторов тока

Трансформаторы делятся на три основных типа:

  • Сухие – устройства, в которых обмотка соединяется с проводником, а процесс охлаждения протекает за счет естественной циркуляции воздуха.
  • Масляные – первичная обмотка расположена на кабеле или шине. Периодичность устройств равна одному ходу обычного сухого трансформатора. Охлаждения происходит за счет трансформаторного масла, забирающего тепло с нагретых элементов и передающего его через стенки и крышки гофрированного бака в окружающую среду.
  • Тороидальные – отсутствует первичная обмотка.

Источник: http://transformator.ru/press_center/stati/2018/princip-raboty-transformatorov-postoyannogo-i-peremennogo-toka/

Трансформаторы тока назначение и принцип действия

Содержание:

В электротехнике довольно часто возникает необходимость измерения величин с большими значениями. Для решения этой задачи применяются трансформаторы тока, назначение и принцип действия которых делает возможным проведение любых измерений.

С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью.

В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

Что такое трансформатор тока?

К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле.

Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение.

Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

  • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
  • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

Назначение трансформаторов

Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока.

Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле.

За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

Принцип работы

Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление.

Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока.

За счет этого потери электрического тока в процессе преобразования будут минимальными.

При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

Классификация трансформаторов тока

Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

  1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством коэффициентов трансформации.
  2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
  3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
  4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
  5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
  6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
  7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

Все характерные классификационные признаки присутствуют в условных обозначениях трансформаторов тока, состоят из определенных буквенных и цифровых символов.

Параметры и характеристики

Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.

Номинальный ток. Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.

Номинальное напряжение. Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.

Коэффициент трансформации. Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.

Токовая погрешность. Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.

Номинальная нагрузка. Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.

Номинальная предельная кратность. Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.

Максимальная кратность вторичного тока. Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.

Возможные неисправности трансформаторов тока

У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.

Читайте также:  Расстояние между трубами теплого пола: советы по определению

Источник: https://electric-220.ru/news/transformatory_toka_naznachenie_i_princip_dejstvija/2017-01-24-1161

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов до величин требуемых для подключения приборов измерения, устройств РЗиА.

Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

Конструкция и принцип действия трансформатора тока

Трансформаторы тока конструктивно состоят из:

  • замкнутого магнитопровода;
  • 2-х обмоток (первичной, вторичной).

Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная — замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки.

Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

Интересное видео о трансформаторах тока смотрите ниже:

Погрешность ТТ определяется в зависимости от:

  • сечения магнитопровода;
  • проницаемости используемого для производства магнитопровода материала;
  • величины магнитного пути.

Предельное значение сопротивление нагрузки указывается в справочных материалах.

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

  1. В зависимости от назначения их разделяют на:
    1. защитные;
    2. измерительные;
    3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
    4. лабораторные.
  2. По типу установки разделяют устройства:
    1. наружной установки (размещаемые в ОРУ);
    2. внутренней установки (размещаемые в ЗРУ);
    3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
    4. накладные — устанавливаемые сверху на проходные изоляторы;
    5. переносные (для лабораторных испытаний и диагностических измерений).
  3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
    1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
    2. одновитковые;
    3. шинные.
  4. По способу исполнения изоляции ТТ разбивают на устройства:
    1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
    2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
    3. имеющие заливку из компаунда.
  5. По количеству ступеней трансформации ТТ бывают:
    1. одноступенчатые;
    2. двухступенчатые (каскадные).
  6. Исходя из номинального напряжения различают:
    1. ТТ с номинальным напряжением — выше 1 кВ;
    2. ТТ с напряжением – до 1 кВ.

Ещё одно интересное видео о схемах включения трансформаторов тока:

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:

  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.

Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

  • 10 — номинальное напряжение;
  • «0» — конструктивный вариант исполнения;
  • «1» — исполнение по длине корпуса;
  • «А» — вторичные выводы расположенные параллельно установочной поверхности;
  • «Б» — изолирующие барьеры;
  • 0,5S — класс точности измерительной вторичной обмотки;
  • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
  • 10Р — класс точности защитной вторичной обмотки;
  • 10 — номинальная предельная кратность вторичной обмотки для защиты;
  • 5 — номинальная вторичная нагрузка обмотки для измерения;
  • 15 — номинальная вторичная нагрузка обмотки для защиты;
  • 300 — номинальный первичный ток;
  • 5 — номинальный вторичный ток;
  • 31,5 — односекундный ток термической стойкости;
  • «УХЛ» — климатическое исполнение;
  • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

Опорные трансформаторы тока TОП-0,66

ОАО «СЗТТ»

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

  • высота над уровнем моря не более 1000 м;
  • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
  • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
  • рабочее положение — любое.

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.<\p>

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Изготовитель — Фирма ООО «ABB»

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

  • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
  • Максимальное напряжение — 3.6 кВ — 25 кВ
  • Первичный ток — 600 A – 5000 A
  • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
  • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
  • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

Источник: http://pue8.ru/relejnaya-zashchita/241-transformatory-toka-printsip-dejstviya.html

Устройство и принцип работы трансформатора тока

Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.

Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.

Принцип действия трансформатора тока

Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока.

Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с.

в витках обмотки начнёт протекать вторичный ток.

Назначение трансформаторов

Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.

Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.

При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.

Конструкция трансформатора тока

Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.

Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину).

Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока.

Это может быть отдельная жила электрического кабеля.

Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений. 

Коэффициент трансформации

Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.

Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.

Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.  

Классификация трансформаторов

Существует несколько признаков, по которым трансформаторы тока делятся.

По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.

  • Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
  • Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
  • Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
  • Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.

По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.

По исполнению первичной обмотки бывают одновитковые, многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.

По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.

Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.

Источник: http://aquagroup.ru/articles/ustroystvo-i-princip-raboty-transformatora-toka.html

Ссылка на основную публикацию
Adblock
detector