Турбомолекулярный насос: принцип работы, констуркция

Турбомолекулярный насос – принцип работы турбомолекулярного насоса. Особенности в плане ремонта турбомолекулярных насосов. Отличия Турбомолекулярного насоса КУКУ от Турбомолекулярного насоса ТМН

Оглавление:

Турбомолекулярный насос — один из наиболее популярных вакуумных агрегатов, который уже успел завоевать крепкое место на огромном рынке вакуумной техники. Данный тип насоса предназначен для создания и соответственно поддержки высокого и сверхвысокого вакуума.

Установки подобного типа — это действительно большая редкость, так как сверхвысокий вакуум — это уровень, достичь которого очень трудно Принцип работы турбомолекулярного насоса заключается в посыле некого сигнала молекулам откачиваемого газа.

Далее в процесс вступают огромные скорости, благодаря которым собственно и удается начать работу данного устройства. Если говорить о скорости вращения ротора в турбомолекулярном насосе, то этот показатель достигает нескольких десятков тысяч оборотов за одну минуту.

Но также стоит помнить, что для применения подобного насоса также требуется и наличие форвакуумного насоса, который служит неким дополнением, и без него провести рабочий процесс попросту не получится.

При выборе вакуумного насоса для длительной работы, люди чаще всего обращают свое внимание на такой пункт, как: скорость откачки. Делается это для того, чтобы достигать как можно больших показателей производительности, которые напрямую зависят от того, какова будет скорость откачки данного устройства.

В таком механизме, как турбомолекулярный насос, скорость откачки определяется при помощи наружного диаметра ступеней ротора. Делается это путем высчитывания количества углов наклона и вычисления первых ступеней скорости вращения.

Если внутри устройства уже высокий уровень давления, то его скорость откачки напрямую зависит от того, насколько эффективно будет работать форвакуумный насос.

При увеличении давления на входе, трение ступеней у проточной части становится только больше, а это значит, что и количество электроэнергии для его работы увеличивается в несколько раз. Далее этот процесс приводит к тому, что проточная часть насоса ТМН становятся все горячее.

Стоит также отметить, что ни в коем случае нельзя допускать снижения скорости откачки устройства, так как в подобном случае внутри механизма может произойти серьезный бой, который однозначно обернется серьезными последствиями.

Для того чтобы подобной угрозы не было, производители насосов ТМН установили в устройство систему отключения питания, которая срабатывается если вращение ротора переходит за определенный уровень.

Не менее важной частью турбомолекулярного насоса является контроллер.

Так как системы подобного типа требуют огромного количество оборотов в минуту, для достижения высоких показателей производительности, в системе обязан быть контроллер, который будет регулировать все эти процессы.

Абсолютно все турбомолекулярные насосы оснащены таким контроллером, так как именно через него происходит регулирование частоты и тому подобных процессов, которые каким-то образом влияют на работу.

Но это еще далеко не все элементы турбомолекулярного насоса, которые играют большую роль. Всего существует еще огромное количество элементов, которые также в некоторых ситуациях могут быть очень важными. Но стоит учитывать и цену данного агрегата, так как подобные устройства находятся на уровне среднего ценового сегмента, и турбомолекулярный насос сможет позволить себе далеко не каждый.

Принцип работы турбомолекулярного насоса

Турбомолекулярный насос — это устройств, принцип работы которого сочетает в себе некие элементы осевого компрессора и молекулярного увлечения.

Это приводит к тому, что процесс вращения ротора начинает иметь крайние точки, что позволяет на выходе получить линейную скорость около 430 м/c.

Именно поэтому, вал турбомолекулярного насоса напрямую зависит от диаметра самого насоса и в результате мы получаем показатели скоростей от 10000 до 60000 оборотов в минуту.

Стоит также взять во внимание тот факт, что принцип работы турбомолекулярного насоса в сравнении с другими устройства сверхвысокого вакуума имеет целый ряд существенных преимуществ, о которых мы сейчас и поговорим.

Преимущества турбомолекулярного насоса:

  • Максимальный уровень готовности к началу работы
  • Быстрый запуск системы, который длится не более 15 минут
  • Высокий уровень степени сжатия
  • Широкий диапазон рабочего давления, которого более чем достаточно для решения большинство задач
  • Не снижает уровень работоспособности при резких перепадах давления

Глядя на все эти преимущества, можем сделать вывод, что турбомолекулярный насос — это действительно очень мощное и качественное устройство, которое можно применять в самых разных направлениях не боясь за показатели его производительности.

Турбомолекулярный насос ТМН

Турбомолекулярный насос ТМН — устройство, позволяющее достигать уровень среднего, высокого и даже сверхвысокого вакуума, что на данный момент является более чем высоким показателем.

Внутри насоса ТМН, мы сможем увидеть многоступенчатый осевой компрессор, который напрямую зависит от работы статорных ступеней и самого ротора.

Статорные ступени в данном механизме получили в свое пользование плоские наклонные каналы, которые расположились вдоль радиуса лопаток.

После того, как в системе начинается процесс вращение роторных ступеней, механизм сразу же начинает процесс откачки молекул газа, что позволяет достигать высокого уровня производительности данного устройства.

Наиболее удачно насосы ТМН себя демонстрируют в молекулярном режиме, так как именно там они имеют все возможные условия для производительной работы.

Для того чтобы устройство могло работать без перебоев и демонстрировать постоянно высокий показатель работоспособности, они также снабжаются форвакуумным насосом, который расположен на выходе и выполняет ряд важнейших функций, без которых большинство процессов стали бы попросту невозможными.

Турбомолекулярный насос KYKY

Турбомолекулярный насосы данной серии всего за два года успели увеличить свои продажи в несколько раз, и ничего удивительного в этом нет. Главной на то причиной, является производительность и качество таких насосов, которые можно применять где угодно, и в любом из направлений, результаты производительности будут максимально высокими.

Если же говорить о наиболее удачной модели подобного насоса, то – это KYKY FF-63/70E. Эта версия турбомолекулярного насоса имеет безмасляный тип работы, так именно такой принцип работы позволяет деталям быть в максимально хорошем состоянии.

Цена подобных устройств на данный момент находится на достаточно высокой отметке, так как характеристики агрегата действительно удивляют.

Характеристики турбомолекулярного насоса KYKY FF-63/70E:

  • Мощность потребления – 100 В
  • Охлаждение системы – Водяное (воздушное)
  • Быстрота действия в л/c – 62
  • Скорость вращения ротора в системе – 51000
  • Время, требуемое для начала работы – 1.5 мин

Таких характеристик более чем достаточно для работы в серийном производстве, что уже является показателем высокого уровня производительности устройства. Так что если вы всерьез задумались над покупкой подобного агрегата, то можете обратить свое внимание на модель KYKY FF-63/70E, которая действительно стоит своих денег.

Ремонт турбомолекулярных насосов

Большое количество людей отказывается от покупки турбомолекулярных печей, думая, что сложная конструкция не позволит производить быстрый ремонт данного агрегата.

Но на самом деле, устройство продумано таким образом, что все сложные элементы системы заменяют друг друга, и починка определенных устройств в системе не будет чем-то ужасным.

Примечательным является тот факт, что если поломка не очень значительная, то устройство некоторое время сможет продолжать свою работу без потери эффективности.

Как показывает практика, турбомолекулярные насосы вовсе редко попадают в станцию техобслуживания и немалую роль в этом играет качество изготовления таких насосов, которые способны работать при любых условиях.

Но если они и попадают в ремонт, то в 95 процентах случаев все заканчивает без каких-либо проблем. Причем и стоимость починки подобного устройства не столь велика по сравнению с насосами других разновидностей.

Источник: http://vacart.ru/turbomolekulyarnyj-nasos/

Турбомолекулярный насос. Виды и работа. Применение и особенности

Турбомолекулярный насос представляет собой специализированный вакуумный агрегат, который используется для образования вакуума большого значения.

Установки данного типа имеют немного разновидностей, ведь аналогов, способных создать сверхвысокий вакуум, практически не существует. Впервые о турбомолекулярных устройствах заговорили в 1913 году. Именно тогда Геде придумал, как создать молекулярный насос.

Однако первые турбомолекулярные устройства стали появляться только в 1958 году благодаря Беккеру. Постепенно их стали активно применять в промышленности.

Огромную роль в процессе создания вакуума выполняет принцип работы насоса. Молекулярное состояние системы находится в прямой зависимости от турбины, которая применяется в данном агрегате. Эта турбина способствует ускорению процесса создания вакуума. Эти агрегаты получили широкое распространение в промышленности, авиации, научных лабораториях и тому подобное.

Виды

Турбомолекулярный насос в зависимости от конструктивного исполнения может быть:

  1. Двухпоточным.
  2. Однопоточным.
  3. С лопатками.
  4. С дисковыми рабочими колесами.

По своей конструкции подобные агрегаты могут быть классифицированы по трем видам:

  1. Цилиндрический вид, в роторе которого имеются кольцевые каналы. Данный агрегат имеет конструктивное исполнение Геде;
  2. Цилиндрический вид, по поверхности его ротора располагаются каналы спирального вида.

    Данный агрегат часто называют устройством Хольвека;

  3. Дисковый вид, в котором используются каналы спирального вида от наружного диаметра к диску. Этот тип конструкций часто называют устройством Зигбана.

Конструктивно схема устройства, который предложил Беккер, имеет корпус, в котором установлены неподвижные статорные диски. Ротор представляет вал с колесами, которые представляют диски с фрезерованными косыми пазами радиального вида. Они также могут представлять лопаточные колеса, лопатки на них ставятся под некоторым углом к торцовой плоскости втулки.

В случае, когда колеса выполнены в виде дисков с прорезями, то в статорных колесах прорези выполняются зеркально. Для лопаточного исполнения применяются те же условия, но уже с учетом углов установки. Чтобы упростить установку статорных колес их разрезают по диаметру.

В молекулярные агрегаты цилиндрического вида, в которых каналы спирального вида находятся по поверхности ротора, имеют несколько иное исполнение. Здесь, в отличие от агрегатов Геде, каналы создаются винтовыми корпусными канавками. В этих устройствах отсутствуют отсекатели, что снижает объем перемещающегося газа.

Газ посредством патрубка для всасывания направляется насос, где перемещается по винтовым канавкам и делится на потоки. Оттуда он выходит в полости нагнетания, из них газ откачивается с помощью форвакуумного насоса. Ротор начинает работать благодаря электрическому двигателю.

Чтобы исключить перемещение газов внутренняя часть насоса надежно изолируется от внешней среды.

В устройстве Зигбана дискового вида каналы изготавливаются в крышках торцового вида. Вращающийся диск в данном случае находится в корпусе. Газ направляется в каналы спирального вида посредством патрубка для всасывания. В большинстве случаев используются три спирали, через которые газ направляет к центру диска, где с помощью форвакуумного насоса откачивается.

Главный минус насосов указанных исполнений – это необходимость применения современного высокоточного оборудования для их производства и сборочных работ.

В случае погрешностей в мехобработке или увеличении зазоров происходит резкое перетекание газов, вследствие чего существенно снижаются показатели откачивания.

Тем не менее, молекулярные ступени с успехом применяются в комбинированных турбомолекулярных устройствах.

Подобные агрегаты выпускают разные производители, вследствие чего они также добавляют разнообразные новшества в своих моделях.

Устройство

Турбомолекулярный насос работает благодаря статорным и роторным дискам, у которых имеются радиальные косые каналы. Их стенки находятся под углом порядка 15-40 градусов по отношению к плоскости диска.

При этом каналы статоров располагаются зеркально по отношению к роторам. Между валом ротора и статором есть зазоры, которые позволяют перемещаться молекулам газа в сторону откачки.

Подобная система подвижных и неподвижных каналов обеспечивает перепад давлений и способствует эффективному образованию вакуума.

Насос приводится в движение благодаря высокочастотному электрическому двигателю. Ток в двигатель подается от электрической сети или мощного аккумулятора. Ротор движка располагается в форвакуумной полости вместе с валом насосного ротора. Такое конструктивное исполнение исключает манжетный износ.

Вращение ротора осуществляется с частотой порядка 18-100 тысяч оборотов в минуту. Поэтому во время сборочных работ насос подвергается тщательной балансировке, во время которой подшипники устанавливаются с максимальной точностью.

Для таких агрегатов применяются специальные подшипники, имеющие текстолитовые сепараторы. Чтобы подшипники работали без перебоев, им нужна смазка. С этой целью используется маслонасос, для которого устанавливается свой электрический движок.

Воздух подается через входной патрубок.

Когда начинается вращаться двигатель, в движение приводится ротор насоса, он вращается относительно статора. Лопатки ротора и статора располагаются по отношению друг к другу зеркально.

Вместе они создают ступень насоса, обеспечивающую компрессионное сжатие воздушных масс. Для воздуха компрессия может достигать показателя 30.

Однако в агрегатах применяется сразу несколько ступеней, вследствие чего компрессия может достигать показателя в несколько сотен единиц.

Далее в действие вступает форвакуумный насос, который благодаря компрессии легко откачивает воздушные массы. Указанное конструктивное исполнение вызвано тем, что для работы данного агрегата требуется определенное давление, чтобы насос мог приступить к работе. Внешний вид подобного агрегата напоминает турбину, вследствие чего и пошло название турбомолекулярный насос.

Принцип действия

Турбомолекулярный насосможно отнести к кинетическим агрегатам, которые работают на принципе передаче импульса молекулам для направления их к откачивающему устройству.

Его конструкция напоминает ротор из многочисленных ступеней. Типичная конструкция выполнена в виде вращающегося круглого диска, на котором расположены лопасти.

Они во время вращения действуют на молекулы воздушных масс и передают им энергию, направляя через статорные канавки.

В насосе предусмотрено несколько ступеней, на каждой из которых происходит сжатие газа до момента, когда они не дойдут до нагнетательного отверстия. Через него сжатый воздух легко откачивается насосом.

Быстродействие и параметры сжатия определяются геометрией роторной и статорной частей, их скоростью вращения, а также числом лопастей. Агрегат производится в вертикальном либо горизонтальном исполнении.

Применение

Турбомолекулярный насос находит широчайшее применение во многих сферах деятельности.

Данные агрегаты применяются в промышленности, в первую очередь это касается медицинской, металлургической, авиационной, атомной, химической, радиотехнической и электронной промышленности.

Также их используют во всевозможных технологических процессах, а также с целью обеспечения функционирования установок и оборудования, где наблюдается необходимость создания и поддержания вакуума высокого значения.

  1. Также турбомолекулярный насосприменяется в аналитических приборах, к примеру, в многокамерных масс-спектрометрах.
  2. Такие агрегаты незаменимы при создании полупроводников, в частности в ионной имплантации и сухом травлении. Производителям необходимо повышать производительность оборудования, их надежность. Поэтому без турбомолекулярных устройств здесь не обойтись. Данные процессы проходят с применением коррозионных и агрессивных газов, поэтому насосы снабжаются защитой и соответствующим покрытием.
  3. Напылении материалов.
  4. При испарении, покрытии и травлении разнообразных материалов.
  5. Химическом осаждении.
  6. В создании ускорителей частиц.
  7. При вакуумировании электронных ламп.
  8. В случае необходимости имитации космического пространства.
  9. Изготовление вакуумных печей.
  10. Для создания устройств поиска протечек.
  11. Создания сверхвысоковакуумного оборудования.
  12. В производстве электронных приборов и так далее.

Преимущества и недостатки

Турбомолекулярный насос имеет следующие преимущества:

  1. Быстрота действия и высокая производительность.
  2. Отсутствие появления загрязнений в откачиваемом объеме.
  3. Высокая надежность во время работы.
  4. Долговечность эксплуатации.
  5. Быстрый запуск.
  6. Постоянная готовность к работе.
  7. Широкий диапазон рабочего давления.
  8. Высокая степень сжатия.

Однако у таких устройств имеются и недостатки:

  1. Высокая цена, вызванная необходимостью применения дорогих комплектующих, использования дорогостоящего обрабатывающего оборудования и высокоспециализированного рабочего труда.
  2. Небольшой дисбаланс лопастей роторных и статорных частей может привести к вибрации и быстрому износу подшипников.
  3. Необходимость постоянной смазки высокоскоростного ротора.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/turbomolekuliarnyi-nasos/

Турбомолекулярный насос – характеристики и принцип работы турбомолекулярных насосов. Молекулярные и турбонасосы применение

Турбомолекулярный насос предназначен для создания среднего, высокого и сверхвысокого вакуума. Он же отвечает за его поддержание. В основе работы насоса заложено придание дополнительной скорости откачиваемому газу в заданном направлении.

Элементы, которые придают движение молекулам – это диски. Турбомолекулярный насос способен создавать вакуум, диапазон которого составляет от 10-2 Па до 10-8. Ротор вращается со скоростью более 20 тыч об/мин.

В комплект оборудования входит форвакуумный насос.

Навигация:

Высоковакуумный турбомолекулярный насос twistorr 84 fs относится к категории малых агрегатов. Его производительность составляет 70 л/с.

Он создавался по новой технологии Agilent, которая уже зарекомендовала себя на рынке вакуумных насосов. Она нашла применение в таких насосах как TwisTorr 304 FS и TwisTorr.

Новая технология способствовала снижению веса и длины ротора. При этом снижение производительности не произошло.

Она обладает высокой производительностью в своем классе. Инженерам удалось увеличить стабильность работы с повышенными газовыми нагрузками. Срок службы подшипников увеличен, энергопотребление уменьшено.

Турбомолекулярный насос TG350F – это многоступенчатый гибридный образец, который имеет турбомолекулярный принцип действия. В агрегат встроены молекулярные ступени, которые имеют металлокерамические подшипники.

В установке используется высококачественная консистентная смазка, обладающая низким давлением пара, способствующего получению сухого вакуума. Срок службы подшипников – 20 тыс. часов без дополнительной смазки.

Турбомолекулярный насос может устанавливаться в любом положении и будет продолжать выполнение своей функциональной задачи. Срок службы агрегата в стандартном режиме вкупе составляет более 100 тыс. часов. Он обладает небольшими размерами, массой.

Может встраиваться в различные вакуумные системы. Расходы на эксплуатацию агрегата малы, система охлаждения может быть воздушной или водяной. Расход энергии низкий.

Молекулярный насос

Принцип работы молекулярного насоса увеличении газа посредствам ударения его молекул о вращающиеся лопасти мотора. При размещении в разряженном газе поверхности, которая будет быстро двигаться, его молекулы, ударяясь об нее, будут приобретать дополнительную скорость.

Молекулярный насос MDP 5011, цена которого ниже агрегатов данной категории, является кинетическим. Молекулы газа, соприкасаясь с поверхностью ротор-стакана, приобретают дополнительный импульс, который несет их к направлению выхода из насоса. Он способен откачивать небольшие объемы.

Турбонасос

Турбонасос сочетает действие осевого компрессора и молекулярное увеличение. Их совместное усилие позволяет увеличить линейную скорость крайних точек окружности до 430 м/с. Вал такого агрегата вращается с огромной скоростью, которая может достигать 60000 об/мин.

Насосы этого типа постоянно готовы к использованию. Для того, чтобы начать выполнять функциональное предназначение, турбонасосу необходимо не более 15 минут. Агрегат способен выдерживать резкое увеличение давление.

Степень сжатия с помощью турбонасоса может составлять до 10х15 степени.

Насос ТМН

Безмасляный вакуум высокого давления можно получить при помощи турбомолекулярного насоса ТМН-200. Данный насос получил широкое применение благодаря возможности последовательного включения вращательного насоса с уплотнением.

В его конструкцию входит многоступенчатый компрессор, на корпусе которого имеются статорные диски. Их наклон составляет 14 -40 градусов относительно оси. Двигатель способен придавать ему вращение более 1000 об/мин.

Быстродействие агрегата составляет 200 л/с.

Турбомолекулярный насос ТМН 500 выполняет быстрое откачивание вакуумной среды. Он способен откачивать неагрессивный газ любого качества. При работе ТМН 500, в остаточном спектре не остаются тяжелые углеводы.

Наличие самоуравновешивающейся опоры ротора позволяет при замене подшипников восстанавливать долговечность агрегата. Производить замету лопаток статорных и роторных дисков. Турбомолекулярный насос способен продолжительное время осуществлять откачку большого потока газов.

Быстрота его действия составляет 500 л/с., при этом коэффициент сжатия равен 2000 отн.ед.

Сухой насос

Пластинчато-роторные насосы относятся к сухому типу. С их помощью можно получить средний вакуум. Их особенность заключается в отсутствии масла в системе. Это означает отсутствие масляного выхлопа. Максимально достигаемая глубина вакуума составляет до 400 мбар. Это зависит от модели установки. Соответственно, минимальное давление, относительно атмосферного, будет составлять 9%.

Создание качественного сухого насоса – дело сложное. В мире всего несколько производителей, которые на такое способны. Если быть точнее, то выпускают модели небольшой производителей много стран: Китай, Америка и т.д. Но высокопроизводительных образцов не так и много.

Принцип действия сухих вакуумных насосов не отличается от масляных. Однако имеются некоторые расхождения. Для смазки деталей в сухих насосах масло не используется, поэтому лопасти изготавливать из металла нет смысла. Материал лопастей таких агрегатов – графитовый композит. Он трется намного меньше, чем метал и обеспечивает уплотнение камеры насоса.

Сухие вакуумные насосы не имеют масляного выхлопа – это их большое преимущество. Нет надобности, периодически производить замену масла и постоянно следить за его уровнем. Благодаря отсутствию системы циркуляции масла, стоимость продукта снижена.

Есть у них и недостатки. Это глубина достигаемого вакуума, уменьшенный срок службы лопастей. Графитовая пыль от лопастей, при большом износе, может попадать в выпускаемый воздух.

Безмасляный насос

Безмасляный вакуумный насос, он же сухой вакуумный насос может создавать низкий и средний вакуум. Чаще всего, представителями данного типа являются платинчато-роторные вакуумные насосы и компрессоры, которые не имеют системы смазки. Они непрерывно откачивают воздух и неагрессивные смеси. Минимальное значение давления данных агрегатов составляет около 100 мбар.

Безмасляные насосы, как правило, комплектуются антифрикционными самосмазывающими материалами, которые могут долго работать и иметь при этом низкую изнашиваемость. Расходы на такое оборудование значительно меньшее, чем на аналоговое, масляное. Они более компактны и потребляют меньшее количество энергии, экологически чисты и обладают низким уровнем шума.

Данный тип насосов разработан, чтобы заменить спиральный форвакуумный насос. Его значительное преимущество – низкая стоимость. Спрос на недорогие и небольшие агрегаты постоянно растет. А безмасляные форвакуумный насос – один из лучших вариантов. Во многих сферах производства требуется, чтобы откачиваемые пары были чистыми, и в них не было примеси масла.

Форвакуумный насос

Форвакуумный насос 2НВР-5ДМ двухступенчатый, роторно-пластинчатого типа. Он производит откачивание воздуха и газов из вакуумных систем.

Примеси, которые подвергаются откачиванию, должны быть предварительно очищены от влаги и грязи. Данный агрегат комплектуется асинхронным электродвигателем. В конструкцию установки входит моноблочная конструкцию.

Устройство его отсечения – автоматическое, производящее отсечение откачиваемого объема.

Рабочий процесс откачивания и всасывания происходит путем изменения объема основной камеры. В камере находится вращающий ротор, который, за счет эксцентрического вращения изменяет рабочий объем.

Во время этого процесса, лопатки, которые помещены в прорези ротора, прижимаются к стенкам цилиндра. Поточная часть установки изготавливается из углеродистой стали и углепластика.

Вал уплотняется манжетой.

Вакуумный насос 2НВР-5ДМ активно применяется в химической и радиотехнической сфере. Вкупе с высоковакуумными насосами используется в высокопроизводительных предприятиях различного типа.

Источник: http://cialis20.ru/turbomolekulyarnyj-nasos/

Турбомолекулярные насосы

Принцип действия турбомолекулярного насоса основан на идеях, заложенных в молекулярном насосе, впервые предложенном Геде в 1913 г.

В простейшем варианте (рис. 3.5, а) молекулярный насос состоит из металлического цилиндра (ротора), вращающегося с большой скоростью внутри герметически закрытого корпуса (статора). По своей конструкции этот насос напоминает ротационный, но отличается от него тем, что в нем нет физической границы между объемами низкого и высокого вакуума.

 

Для молекул газа, попадающих во впускное отверстие насоса со скоростями теплового движения, довольно высока вероятность столкновения с вращающейся поверхностью ротора, в результате чего они остаются на ней некоторое время (равное времени пребывания). После отрыва от поверхности молекулы приобретают высокую скорость, направленную по касательной к вращающемуся ротору.

Таким образом, за счет импульсов, полученных при таких столкновениях, молекулы будут двигаться вслед за цилиндром в полости насоса.

Для эффективной работы насоса необходимо, чтобы приобретаемая молекулой дополнительная скорость значительно превосходила скорость ее теплового движения, а длина свободного пробега молекулы была больше размеров впускного отверстия насоса, чтобы практически полностью исключить межмолекулярные столкновения. Геде показал, что в условиях свободно-молекулярного течения отношение давлений на выходе и на входе насоса (степень сжатия) определяется вьтажением

(3.1)

где w — угловая скорость вращения ротора, которая должна быть порядка 10000 об/мин, и А — константа, определяемая геометрией рабочего зазора насоса и природой газа.

Для того чтобы константа А была большой, необходимо увеличивать площадь части поверхности ротора, взаимодействующей с входящим потоком газа, но зазор между ротором и статором при этом должен быть малым. Кроме того, для обеспечения условий свободно-молекулярного течения предварительный вакуум должен быть не хуже 100 Па.

В одной из разработанных конструкций (рис. 3.5, б) поверхность была увеличена за счет пазов в роторе, в которые входят перегородки, находящиеся на статоре (рис. 3.5, б). Диаметр ротора при этом составлял 5 см, а зазор между ним и статором — 0,1 мм.

Несколько таких откачивающих секций, включенных последовательно, создавали общую степень сжатия по азоту 105.

Быстрота откачки такого насоса относительно низкая и составляет около 10-3 м3с-1. Были предложены различные конструкции насосов этого типа, в частности насос Голвека , в кото ром использован гладкий ротор, а статор снабжен винтовыми желобками правой и левой нарезки.

Ширина желобков постоянна, высота же уменьшается от средней части ротора насоса (вход) к его торцам (выход). При вращении статора молекулы откачиваемого газа перемещаются вокруг и вдоль оси насоса.

Аналогичная идея использована в конструкции дискового насоса Зигбана, в котором гладкий диск вращается вплотную к поверхности статора, снабженного несколькими спиральными желобками, по которым откачивается газ.

Однако вследствие требований высокой скорости вращения и очень малых зазоров между вращающимися и неподвижными элементами насоса, а также относительно невысокой быстроты откачки, такие конструкции не выпускались в промышленных масштабах.

 Ситуация изменилась в связи с идеей турбомолекулярного насоса, впервые описанной Баккером в 1958 г. Этот насос по своей конструкции напоминает многоступенчатый компрессор или паровую турбину (рис. 3.6, а). Его статор и ротор снабжены лопатками, установленными под определенными углами.

Этот насос удовлетворительно функционирует при миллиметровых зазорах между лопатками статора и ротора, что позволяет назначать нежесткие допуски на его изготовление и сборку.

Хотя молекулы газа движутся по окружности, в соответствии с направлением движения лопаток, откачка, в отличие от молекулярного насоса, происходит вдоль оси. 

Принцип действия тур-бомолекулярного насоса проиллюстрирован на рис. 3.6, б.

Рассматривая усредненный поток молекул газа, движущихся в направлении вращающихся лопаток, можно видеть, что их средние относительные скорости будут составлять с направлением вращения довольно острый угол и они будут ударяться о кромку лопатки, как показано на рисунке.

В предположении диффузного механизма рассеяния отраженных частиц молекулы, отраженные в пределах угла ?1, будут возвращаться в область 1, тогда как все молекулы, отраженные в пределах угла  ?3, будут попадать в область 2.

Молекулы, отразившиеся в пределах угла  ?2, могут оказаться как по ту, так и по другую сторону лопаток.

В аналогичных ситуациях оказываются и молекулы, сталкивающиеся с лопаткой со стороны 2. Вероятность того, что молекулы перейдут с одной стороны лопатки ротора на другую, зависит от соотношения углов, и, как видно из рисунка, вероятность переноса молекул в область 2 намного выше вероятности обратного процесса.

Механизм переноса молекул был исследован с помощью метода Монте-Карло. Оказалось, что зависящая от скорости вращения лопатки и угла ее установки вероятность переноса молекулы из области 1 в область 2 примерно в 10—40 раз больше, чем в обратном направлении.

Однако суммарный поток газа вдоль оси ротора зависит не только от рассмотренных вероятностей, но также от перепада давлений на лопатках. Конструкция, рассчитанная на максимальную быстроту откачки, обычно характеризуется низкой степенью сжатия, и наоборот. Таким образом, приходится идти на компромисс между степенью сжатия и быстротой откачки.

Поскольку молекула, отраженная лопаткой, приобретает тангенциальную составляющую скорости в направлении движения ротора, она будет ударяться о лопатку статора под углом отражения.

Но поскольку лопатки статора расположены под противоположным углом по отношению к лопаткам ротора, поток молекул газа будет ускоряться вдоль оси насоса.

В реальных конструкциях используются несколько пар ротор — статор; каждая пара образует одну откачивающую ступень.

В современных насосах этого типа довольно часто несколько откачивающих ступеней на входе конструируют из расчета достижения максимальной быстроты откачки, тогда как остальные, расположенные на выходе насоса, конструируют из расчета достижения высоких степеней сжатия. Конструкция турбомолекулярного насоса, описанного Беккером и выпускаемого фирмой Arthur Pfeiffer GmbH, имеет две откачивающие секции, расположенные симметрично относительно входа (рис. 3.7).

Скорость вращения ротора зависит от размеров насоса и обычно составляет около 10 000 об/мин. Такая высокая скорость вращения создает значительные нагрузки в подшипниках, которые в связи с этим следует эффективно смазывать потоком масла и одновременно охлаждать водой.

На турбомолекулярных насосах были получены почти такие же скорости откачки, как и у диффузионных насосов таких же размеров. Насосы, изготовляемые фирмой Pfeiffer, обеспечивают быстроту откачки в диапазоне 250— 15 000 м3ч-1 при степени сжатия 109 по азоту и 103 по водороду.

Поскольку для достижения свободномолекулярных условий течения турбомолекулярные насосы откачиваются ротационными или сорбционными насосами, возможно достижение в вакуумной системе степени разрежения ниже 10-8 Па. В системе остаются в основном легкие газы, такие, как водород.

Поскольку максимальная степень сжатия соответствует тяжелым молекулам, пары масла из подшипников не попадают в систему, так что турбомолекулярные насосы позволяют получать вакуум, в котором отсутствуют следы углеводородов и нет необходимости использовать отражатели и ловушки, охлаждаемые жидким азотом. Однако необходимо отметить, что когда насос находится в нерабочем состоянии (не вращается), пары масла из подшипников могут попадать в вакуумную систему, поэтому должны быть приняты соответствующие меры предосторожности.

Последние конструкции турбомолекулярных насосов рассчитаны по теории Кругера и Шапиро. В этих насосах усовершенствованы лопатки, что позволило повысить их эффективность по сравнению с базовой конструкцией Беккера.

Увеличение скорости вращения ротора до 42 ООО об/мин при помощи электродвигателей постоянного тока с электронным управлением позволило Остерстрему и Шапиро разработать конструкцию, обладающую десятикратной быстротой откачки (при небольшом уменьшении степени сжатия) и в два раза меньшим числом откачивающих секций по сравнению с базовой моделью такого же размера.

Миргелем предложена альтернативная конструкция, в которой ротор вращается вокруг вертикальной оси, а поток газа движется в одном направлении (в отличие от конструкции Беккера, где входящий газ разделяется на два потока, рис. 3.7). По сравнению с горизонтально расположенным ротором такой насос, выпускаемый фирмой Leybold-Heraues, обладает более компактной конструкцией (рис. 3.8). 

Одно из преимуществ этого насоса заключается в отсутствии неравномерности нагрузок на подшипники, что могло бы привести к выдавливанию смазывающей жидкости или ее паров из привода и последующему попаданию их в вакуумную установку. Насос имеет следующие характеристики: диаметр 20 см, высота 46 см, скорость вращения статора 24000 об/мин, быстрота откачки 1332 м3*ч-1.

Позже этой же фирмой была выпущена новая модель насоса с подшипниками на магнитной подвеске с целью исключения любой возможности загрязнения вакуума маслом. Подшипники этого типа имеют очень сложную конструкцию и поэтому весьма дорогие.

Некоторые другие фирмы также применяют вертикальное расположение ротора, особенно в небольших низкоскоростных насосах. Однако эта конструкция в отсутствие верхнего подшипника не предохраняет ротор от ударов и вибраций. Фирма Pfeiffer смогла разрешить эту проблему, использовав на вакуумном конце оси магнитную подвеску на основе постоянного магнита.

Хотя турбомолекулярный насос обеспечивает более высокую скорость откачки по сравнению с молекулярным насосом, последний способен достигать большей степени сжатия. Это соображение было использовано фирмой CIT-Alcatel в комбинированном варианте насоса.

Конструкция этого насоса, в котором соединены оба устройства, описана в работе  и схематически представлена на рис.3.9. На входе насоса расположен четырехступенчатый турбомолекулярный насос диаметром 20 см.

За ним на той же самой оси размещен молекулярный насос цилиндрического типа.

Высокая степень сжатия позволяет осуществлять откачку до давлений ниже 10-6 Па с выхлопом откачанного газа непосредственно в атмосферу. Однако для достижения условий свободно-молекулярного течения на входе в насос необходимо создать начальный форвакуум 10 Па.В последних конструкциях предусмотрена установка воздушного турбокомпрессора на оси ротора.

Такие турбомолекулярные насосы обеспечивают высокую быстроту откачки, высокий вакуум (до 10-8 Па) и отсутствие загрязняющих следов масла. Рабочая часть насоса обычно может прогреваться до 10O0C или несколько выше; кроме того, при эксплуатации такого насоса не требуется отражателей или ловушек.

Однако эти насосы все же представляют собой прецизионные устройства, работающие при высоких скоростях вращения ротора, поэтому они весьма дороги и требуют регулярного и квалифицированного технического обслуживания.

Особенно это касается проблемы износа подшипников, которые легко подвержены повреждениям от твердых частиц, способных попасть в насос.

Если форвакуум создается ротационным насосом, то следует предусмотреть меры, предотвращающие попадание паров масла, хотя эта проблема для турбомолекулярного насоса не так важна, как в случае диффузионного, ввиду высокой степени сжатия для тяжелых молекул.

В последнее время турбомолекулярные насосы находят все более широкое применение, особенно в электронных микроскопах, где требуется довольно высокая производительность при полном отсутствии загрязнения маслом.

Источник: http://www.pro-vacuum.ru/nasosy-dlia-vysokogo-vakuuma/turbomolekuliarnye-nasosy/vse-stranitcy.html

Лекция 4 тема: “МОЛЕКУЛЯРНЫЕ НАСОСЫ”

Конспект лекций “Вакуумная техника”

Преподаватель Конев С.А.

Лекция 4

Молекулярные насосы

Работа данных насосов основана на молекулярно-кинетических явлениях.
Ротор 1 с большой быстротой вращается в направлении стрелки около оси 7. Между камерой 2 и ротором 1 имеется зазор 3, который на участке между впускной (n) и выпускной (m) сторонами значительно уже. Здесь ширина h зазора в большей части технических моделей составляет 2/100-5/100 мм.

Рассматриваются явления, которые происходят в насосе при отсутствии межмолекулярного столкновения. Молекулы, входящие в насос по впускной трубке 4 со стороны n, ударяются в ротор 1 и получают дополнительный импульс в направлении в сторону выпускного патрубка 5. Зазор h между m и n создаёт очень большое сопротивление обратному потоку газа непосредственно через этот зазор.

В результате этого между выпускной и впускной сторонами возникает разность давлений. Эту разность давлений показывает манометр 6. В результате расчётов, где w- частота вращения ротора, M- молекулярный вес откачиваемого газа. Наибольшее выпускное давление молекулярных насосов не должно превышать 0,1 мм рт.ст.. Их предельное давление ниже 10-6 мм рт. ст.

Преимущества:

  • Для начала работы насосы требуют мало времени. По мере достижения предусмотренного числа оборотов они уже работают с полной производительностью.
  • Пары масла не должны сходить в состав остаточных газов.
  • Насосы нечувствительны к прорыву воздуха.
  • Свойство этих насосов быстрее откачивать тяжёлые газы, что в ряде случаев имеет большое значение.

Недостатки:

  • В большинстве конструкций зазоры в этих насосах не должны превышать несколько сотых миллиметра. Такая точность значительно удорожает насос.
  • Наличие подвижных деталей приводит к износу насосов.
  • Насосы чувствительны к загрязнениям и от попадания в них металлических или стеклянных частиц приходят в негодность.
  • Достигаемые значения быстроты действия значительно ниже, чем у диффузионных насосов.
  • Работа молекулярных насосов связана со значительным шумом.

            Принцип действия турбомолекулярного насоса основан на сообщении молекулам разреженного газа направленной дополнительной скорости быстро движущейся твёрдой поверхностью.             На рисунке представлена принципиальная схема турбомолекулярного насоса.

Рабочий механизм насоса образован роторными 3 и статорными 2 дисками, имеющими радиальные косые пазы- каналы, боковые стенки которых наклонены относительно плоскости диска под углом 40-150; причём пазы статорных дисков расположены зеркально относительно пазов роторных дисков. Между статорными дисками и валом ротора и между роторными дисками и корпусом насоса имеются зазоры.

При молекулярном режиме течения газа в насосе, т.е. при давлениях ниже 1-10-1 Па, такая система подвижных и неподвижных пазов обеспечивает преимущественное прохождение молекул газа в направлении откачки. Действительно, молекула газа, прошедшая через статорный паз, попав в паз роторного диска, имеет большую вероятность пройти через него, т.к.

боковая стенка 1 роторного паза уходит с пути молекулы, а стенка 2 не может её нагнать, в то время как такая же молекула, подходящая к роторному диску справа, т.е. против направления откачки, вошедшая в паз, будет с большой вероятностью задержана стенкой 2 роторного паза и отражена обратно в направлении откачки.

Молекулы, отражённые роторным диском, кроме тепловой скорости, приобретают дополнительную скорость. Эта скорость равна окружной скорости роторного диска и направлена параллельно оси насоса. Благодаря соответствующему углу наклона боковых стенок статорного паза здесь также обеспечивается преимущественное прохождение молекул в направлении откачки.

Эффективность насоса возрастает с ростом окружной скорости Vокр ротора и с уменьшением наиболее вероятной скорости молекул Vв.             Расчёты показывают, что максимальная быстрота действия достигается при угле наклона пазов около 300. С другой стороны для получения достаточно высокой степени сжатия в одной ступени (от 3 до 5) угол наклона паза должен быть не более 200.

Поэтому в современных насосах высоковакуумные ступени выполняются с углом наклона 350, а остальные- 200.             Турбомолекулярные насосы имеют очень высокий коэффициент сжатия для тяжёлых газов, то во время работы эти насосы являются надёжным барьером против проникновения тяжёлых молекул масла из форвакуумной полости насоса.

Конструкции и характеристики:

            Турбомолекулярные насосы выполняются:

  • с горизонтально расположенным;
  • с вертикально расположенным ротором.

            Ротор ТМН может иметь следующие опоры:

  • подшипниковые;
  • на магнитном подвесе;
  • на газодинамических опорах.

            На рисунке показана типичная зависимость быстроты действия турбомолекулярного насоса от впускного давления. Быстрота действия насоса остаётся постоянной в широком диапазоне давлений.

При давлении 10-1 Па начинает сказываться изменение режима течения газа через диски насоса, а при давлении ниже 10-6Па, на быстроту действия начинает оказывать влияние водород, выделяющийся из стенок насоса и перетекающий со стороны форвакуумной полости насоса.
Достоинства турбомолекулярных насосов:

  • быстрый запуск;
  • малая селективность при откачке различных газов;
  • отсутствие паров масла и продуктов его разложения с остаточной атмосфере;
  • возможность получения сверхвысокого вакуума без использования ловушек на входе;
  • механизм насоса не повреждается при прорывах атмосферного воздуха.

Практические указания по эксплуатации:
            Недопустима длительная выдержка остановленного ТМН под форвакуумным давлением (ниже 10 Па), т.к.

при этом пары масла могут проникнуть со стороны форвакуума через роторный механизм на сторону высокого вакуума. Остановленный ТМН должен быть заполнен осушенным воздухом или азотом до атмосферного давления через кран, имеющийся в форвакуумном патрубке насоса.

            Небольшое количество паров масла, попавшее на вход ТМН, обычно легко удаляется прогревом корпуса в области впускного патрубка до 100-120 0С при работающем ТМН. Большую опасность для работы насоса представляет попадание в него твёрдых частиц.

При наличии такой опасности во входном патрубке насоса должна быть установлена металлическая сетка с размерами ячейки 1х1 мм.

тема: адсорбционные насосы

            Принцип действия адсорбционных насосов основан на способности предварительно обезгаженных пористых твёрдых тел поглощать газы и пары в основном за счёт физической абсорбции.             Адсорбционные насосы нашли применение в системах безмасляной откачки как для создания предварительного разряжения, так и для получения и поддержания весьма низких давлений в высоковакуумных сосудах. В качестве поглощающих материалов (адсорбентов) могут применяться силикагели, алюмогели, цеолиты и активированные угли.             Наибольшее распространение получили цеолиты, представляющие собой алюмосиликаты щелочного или щелочноземельного металла, природного или искусственного происхождения. Пористую структуру и очень хорошие адсорбирующие свойства они приобретают после прокаливания.             Недостатками цеолитов, как и других адсорбентов, является то, что они плохо поглощают инертные газы, в частности аргон. Кроме этого они неэффективны по отношению к газам с очень низкой точкой кипения (Н2, Не, Ne). Поскольку равновесное давление над поверхностью адсорбента, он обычно охлаждается жидким азотом, жидким гелием или водородом.             С целью получения низких предельных остаточных давлений рекомендуется осуществлять предварительную откачку сосуда до давления 104 Па водоструйным или механическим вакуумным насосом. Иногда в качестве насоса для форвакуумной откачки используют другой адсорбционный насос.

            Основным достоинством адсорбционных насосов является полное отсутствие органических загрязнений откачиваемого сосуда. Недостатки насосов- необходимость использования жидкого азота, периодическая регенерация и довольно значительное время охлаждения насоса.

{jlcomments}

Источник: https://vactron.ru/index.php/library/lection/35-lektsiya-4-tema-molekulyarnye-nasosyq

Вакуумные насосы

Вакуумные насосы получили широкое распространение в  самых различных отраслях промышленности и науки. Основное применение вакуумных насосов это удаление воздуха или газа из герметично замкнутого объема и создания в нем разряжения . Мы рассмотрим наиболее распространенные типы,  характеристики вакуумных насосов их принцип работы и основные применения.

Классификация насосов по диапазону давления

Вакуумные насосы классифицируются по диапазону рабочих давлений на :

  • первичные (форвакуумные ) насосы,
  • дожимные насосы
  • вторичные насосы.

В каждом диапазоне давлений применяются различные типы вакуумных насосов, отличающихся друг от друга по конструкции. Каждый из этих типов имеет свое преимущество по одному из следующих пунтков:  возможный диапазон давления, производительность, цена и периодичность и простота технического обслуживания.

Независимо от конструкции вакуумных насосов, основной принцип работы один и  тот же. Вакуумный насос удаляет молекулы воздуха и других газов из вакуумной камеры (или из выходного патрубка вакуумного насоса более высокого давления , при подключении последовательно).

При уменьшении давления в камере, последующее удаление дополнительных молекул становится экспоненциально сложнее . Поэтому промышленные вакуумные системы должный охватывать большой диапазон давлений от 1 до  Торр. В научной сфере  данный показатель достигает торр или ниже.

Выделяют следующие диапазоны давления:

  • Низкий вакуум:> от атмосферного давления до 1 торр
  • Средний вакуум: от 1 торр до 10-3 торр
  • Высокий вакуум: 10-3 торр до 10-7 торр
  • Сверхглубокий вакуум: от 10-7 торр до 10-11 торр
  • Экстремальный высокий вакуум: < 10-11 торр

Соответствие вакуумных насосов диапазонам давления  :

Первичные (форвакуумные ) насосы- низкий вакуум.

Дожимные (бустерные ) насосы —  низкий вакуум.

Вторичные (высоковакуумные) насосы: Высокий, сверхглубокий и экстремально  высокий вакуум.

Классификация вакуумных насосов по принципу работы с газом

Выделяют две основные технологии работы с газом в вакуумных насосов:

  • Перекачка газа
  • Улавливание газа

Насосы работающие по технологии перекачки газа подразделяются на кинетические насосы и насосы объемного вытеснения.

Кинетические насосы работают по принципу передачи импульса молекулам газа от высокоскоростных лопастей для обеспечения постоянного перемещения газа от входного патрубка насоса к выходному. Кинетические насосы обычно не имеют герметичных вакуумных камер, но могут достигать высоких коэффициентов сжатия при низких давлениях.

Насосы объемного вытеснения работают путем механического улавливания объема газа и перемещения его через насос. В герметичной камере газ  сжимается до меньшего объема при более высоком давлении и после этого, сжатый газ вытесняется в атмосферу (или в следующий насос).

Обычно кинетические и объемные работают последовательно для обеспечения более высокого вакуума и расхода. Например, очень часто турбомолекулярный (кинетический) насос поставляется собранным  последовательно с винтовым (объемным) насосом в единую установку.

Насосы работающие по технологии улавливания газа, захватывают молекулы газа на поверхностях в вакуумной системе.

Данные насосы работают при меньших расходах, чем перекачивающие насосы, но при этом могут создавать сверхвысокий до  торр, и безмасляный вакуум.

Улавливающие насосы работают с использованием криогенной конденсации, ионной реакции или химической реакции и не имеют движущихся частей.

Типы вакуумных насосов в зависимости от конструкции

В зависимости от конструкции вакуумные насосы можно разделить на масляные(мокрые) и сухие (безмасляные), в зависимости от того, подвергается ли газ воздействию масла или воды в процессе перекачки.

В зависимости от конструкции вакуумные насосы можно разделить на масляные(мокрые) и сухие (безмасляные), в зависимости от того, подвергается ли газ воздействию масла или воды в процессе перекачки.

В конструкции мокрого насоса используется  масло или вода для смазки и / или герметизации. Данная жидкость может загрязнять перекачиваемый газ.

Сухие же насосы не имеют жидкости в проточной части  и зависят от уплотненных зазоров между вращающимися и статическими частями насоса.

В качестве уплотнения чаще всего используют полимер (PTFE) или диафрагму для отделения механизма насоса от перекачиваемого газа. Сухие насосы снижают риск загрязнения системы масла по сравнению с мокрыми насосами.

В качестве первичных (форвакуумных ) насосов чаще всего используются следующие конструкции, описанные ниже.

Первичный форвакуумный насос. Принцип работы. Варианты конструкций

Маслозаполненный ротационный лопастной насос

(мокрый, объемный)

В ротационном лопастном насосе газ поступает во входное отверстие и захватывается эксцентрично установленным ротором, который сжимает газ и передает его в выпускной клапан Подпружиненный клапан позволяет выпускать газ при превышении атмосферного давления.

Масло используется для герметизации и охлаждения лопастей. Давление, достигаемое с помощью роторного насоса, определяется количеством ступений. Двухступенчатая конструкция может обеспечивать давление 1 ×10-3  мбар.

Производительность составляет от 0,7 до 275 м3/ч.

Водокольцевой вакуумный насос. Конструкция и принцип работы

(мокрый,объемный)

Водокольцевой насос сжимает газ с помощью вращающегося рабочего колеса, расположенного эксцентрично внутри корпуса насоса. Жидкость подается в насос и посредством центробежного ускорения образует движущееся цилиндрическое кольцо.

Это кольцо создает серию уплотнений в промежутках между лопастями рабочего колеса, которые и являются камерами сжатия .

Эксцентриситет между осью вращения рабочего колеса и корпусом насоса приводит к уменьшению объема между лопатками рабочего колеса и тем самым  к сжатию газа и выпуска его его через выходной патрубок.

Этот насос имеет простую, прочную конструкцию, так как вал и рабочее колесо являются единственными движущимися частями. Водокольцевой насос имеет  большой диапазон мощности и может обеспечивать давление 30 мбар при использовании воды температурой  15 ° С. При использовании других жидкостях возможны и более низкие давления. Диапазон доступных производительностей  от 25 до 30 000 м3/ч.

Диафрагменный вакуумный насос

(сухой объемный)

На диафрагменных насосах используется гибкая диафрагма, которая соединена с штоком и  попеременно перемещается в противоположных направлениях, так что газ попадает в пространство над диафрагмой и полностью заполняет его. Затем впускной клапан закрывается , а выпускной клапан открывается, чтобы выпустить газ.

Диафрагменный вакуумный насос компактный и очень легко обслуживается. Срок службы диафрагм и клапанов обычно составляет более 10 000 часов работы.

Диафрагменный насос используется для поддержки небольших турбомолекулярных насосов в чистом, высоком вакууме. Это насос малой мощности, широко используемый в научно-исследовательских лабораториях для подготовки проб.

Типичное предельное давление 5 ×10-3  мбар. Производительность от 0,6 до 10 м3 / ч (от 0,35 до 5,9 фут3 / мин).

Спиральный вакуумный насос

(сухой объемный)

Основными элементами насоса являются спиральные ротор и статор. Расширенный газ попадает  в большие круглые пространства, которые сужаются, при достижении  центра спирального вращающегося ротора.

Уплотнение из полимера PTFE обеспечивает герметичность между спиральными элементами насоса без использования масла в перекачиваемом газе. Достигаемое давление 1 × мбар.

Производительность от 5 до 46 м3/ч.

Дожимные (бустерные) насосы

Двухроторный вакуумный насос

(сухой объемный)

Двухроторные насосы в основном используется в качестве дожимных (бустерных) насосов и предназначены для удаления больших объемов газа. Два ротора, не касаясь друг друга, вращаются, чтобы непрерывно передавать газ в одном направлении через насос.

Это повышает производительность первичного / форвакуума насоса, увеличивая скорость откачки примерно 7: 1 и улучшает окончательное давление, примерно 10: 1. Бустерные насосы могут иметь два или более роторов. Типичное предельное давление 1 торр).

Диффузионные паромаслянные насосы

(мокрый, кинетический)

Паровые диффузионные насосы  передают кинетическую энергию молекулам газа с использованием высокоскоростного нагретого масляного потока, который перемещает газ из входа в выпускное отверстие. Тем самым обеспечивает пониженное давление на входе. Данная конструкция является довольно устаревшей.

В значительной степени они вытесняются на рынке более удобными сухими турбомолекулярными насосами. Диффузионные паромаслянные насосы не имеют  движущихся частей и обеспечивают высокую надежность. Данный вакуумный насос обладает низкой ценой. Предельное давление менее 7,5 х 10-11 Торр.

Диапазон производительности 10 — 50 000 л/с.

Криогенный насос

(сухой,  технология улавливания газа)

Криогенные насосы работают путем захвата и хранения газов и паров, а не перекачки их через себя. Данный тип насосов используетт криогенную технологию для замораживания или улавливания газа на очень холодной поверхности (криоконденсация или абсорбция) при температуре 10 ° К до 20 ° К (минус 260 ° С). Эти насосы очень эффективны, но имеют ограниченную емкость для хранения газа.

Собираемые газы / пары должны периодически удаляться из насоса, нагревая поверхность. Откачиваются они с помощью другого вакуумного насоса. Этот процесс также известен как регенерация. Криогенные насосы требуют установки дополнительной компрессорной системы охлаждения для создания холодных поверхностей.

Эти насосы могут достигать давления 7,5 х 10-10 Торр и имеют диапазон производительности от 1200 до 4200 л/с.

Основные производители вакуумных насосов

Вакуумный насос купить можно производства следующих изготовителей

BUSCH www.buschvacuum.com

Becker www.beckerpumps.com

Elmo Rietschle http://www.gd-elmorietschle.com/en

NASH http://www.gdnash.com/liquid_ring_vacuum_pumps/

Robuschi http://www.gardnerdenver.com/en/robuschi/products/vacuum-pumps

Pfeiffer Group group.pfeiffer-vacuum.com

Samson Pumps www.samson-pumps.com

Источник: https://RuPumps.com/nasosyi/po-tipu/vakuumnyiy-nasos.html

Ссылка на основную публикацию
Adblock
detector